LINEAR-PHASE FIR DIGITAL FILTER DESIGN
BY
FREQUENCY-SAMPLING METHODS. EXAMPLES

Exercises 4-a.

1. Summary of Important Expressions

Table 1. The four cases of linear phase FIR filters. The real-valued frequency responses. Summary.
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Table 2. Summary on the Uniform Frequency-Sampling Method 3.
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Table 3. Summary on the Uniform Frequency-Sampling Method 4. Recursive FIR Filter Design
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2. Examples

Example 1
Determine the unit sample response h(n) and the frequency response of a linear phase FIR filter of length M=4
for which the frequency response at @ =0 and @ = 77/ 2 is specified as

) 1
Hr(O):l Hr(E]:E

For the design, the non-uniform frequency-sampling method has to be applied.

Example 2
Determine the coefficients h(n) of a linear phase FIR filter of length M=16 frequency response of which
satisfies the condition:

H 27k 1 k=0,1,
"\ 16 ) |0 k=2,345678
For the design, the uniform frequency-sampling method known as non-recursive FIR filter design by direct
computation of unit sample response has to be applied.
Example 3

Determine the transfer function H(z) of a linear phase FIR filter of length M=16 frequency response of which
satisfies the condition:

H 27k B 1 k=0,1,
"\ 16 ) |0 k=2,34,5,678

For the design, the uniform frequency-sampling method based on recursive FIR filter design has to be applied.



LINEAR-PHASE FIR DIGITAL FILTER DESIGN
BY
WINDOWS METHOD.
EXAMPLES

Exercise 4-b.

Summary of Important Expressions

Table 1. FIR Linear Time - Invariant System Description: A Review of Basic Expressions
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Table 2. Some Commonly Used Windows for FIR Filter Design

Window Type Window Functions, w(n), -M <n<M , M =¥, |W(n)|:0 for n> M
1. Rectangular w(n) =1
2. Bartlett w(n) = 1_ﬂ
M+1
3. Hann w(n)=1 1+cosﬂ
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4. | Hamming W(n) = 0.54 -+ 0.46 cos ==
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(adjustable window ) M o ((xr2f |
parameter: o w(n) = lp(x) =1+ > | ——
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Comments on Kaiser Window: 1qg(x) is the modified zero-th-order Bessel function of the first kind. For most

practical applications, about 20 terms in the above summation are sufficient to arrive at reasonably accurate
values of w(n) .




Table 3. Frequency Responses of Some Linear Time-Invariant Systems

System Frequency Response
1. | Differentiator H (ej‘" ) = j_a) —-T<w<r.
T
-] >0
2. | Hilbert Transformer | H(jo)= 1 0 0=0, -7<w<r
] <0
Example 1.

Design a band-pass filter with pass-band cut off frequencies f, =20kHzand f, =40kHz of the order N =11.
Frequency sampling is fg =160kHz . It is desired to apply rectangular and Bartlett window at the design.

Example 2.
By the impulse response truncation method (by the windowing method at rectangular window application)
design a Hilbert transformer of the order N =11.

Example 3.
By the windowing method at Hann window application design a differentiator of the order N =11.

Example 4.
Design a stop-band filter with pass-band cut off frequencies f, =20kHzand f, =40kHz of the order N =11.

Frequency sampling is fg =160kHz . It is desired to apply rectangular and Bartlett window at the design.




