

IP Telephony (Voice over IP)

Instructor

Quincy Wu (吳坤熹), solomon@ipv6.club.tw

Textbook

 "Carrier Grade Voice over IP," D. Collins, McGraw-Hill, Second Edition, 2003.

Requirements

- Homework x 5 20%
- Mid-term exam 20%
- Oral presentation 40%
- Final exam 20%

Course Webpage

http://Course.ipv6.club.tw/VoIP/

TAs

- 蔡政霖
- 陳韋霖

Introduction

Chapter 1

NTP VoIP Platform

Carrier Grade VoIP

- Carrier grade and VoIP
 - mutually exclusive
 - A serious alternative for voice communications with enhanced features
- Carrier grade
 - The last time when it fails
 - 99.999% reliability (high reliability)
 - Fully redundant, Self-healing
 - AT&T carries about 300 million voice calls a day (high capacity).
 - Highly scalable
 - Short call setup time, high speech quality
 - No perceptible echo, noticeable delay and annoying noises on the line

VoIP

- Transport voice traffic using the Internet Protocol (IP)
- One of the greatest challenges to VoIP is voice quality.
- One of the keys to acceptable voice quality is bandwidth.
- Control and prioritize the access
- Internet: best-effort transfer
 - VoIP != Voice over Internet
 - The next generation Telcos
 - Access and bandwidth are better managed.

- A packet-based protocol
 - Routing on a packet-by-packet base
- Packet transfer with no guarantees
 - May not receive in order
 - May be lost or severely delayed
- TCP/IP
 - Retransmission
 - Assemble the packets in order
 - Congestion control
 - Useful for file-transfers and e-mail

Data and Voice

- Data traffic
 - Asynchronous can be delayed
 - Extremely error sensitive
- Voice traffic
 - Synchronous the stringent delay requirements
 - More tolerant for errors
- IP is not for voice delivery.
- VoIP must
 - Meet all the requirements for traditional telephony
 - Offer new and attractive capabilities at a lower cost

Why carry voice?

- Internet supports instant access to anything
- However, voice services provide more revenues.
 - Voice is still the killer application.

Why use IP for voice?

- Traditional telephony carriers use circuit switching for carrying voice traffic.
- Circuit-switching is not suitable for multimedia communications.
- IP: lower equipment cost, integration of voice and data applications, potentially lower bandwidth requirements, the widespread availability of IP

Lower Equipment Cost

- PSTN switch
 - Proprietary hardware, OS, applications
 - High operation and management cost
 - Training, support and feature development cost
- Mainframe computer
- The IP world
 - Standard hardware and mass-produced
 - Application software is quite separate
 - A horizontal business model
 - More open and competition-friendly
- IN (Intelligent Network)
 - does not match the openness and flexibility of IP.
 - A few highly successful services

Voice/Data Integration

- Click-to-talk application
 - Personal communication
 - E-commerce
- Web collaboration
 - Shop on-line with a fried at another location
- Video conferencing
- IP-based PBX
- IP-based call centers
- IP-based voice mail

The Widespread Availability of IP

- IP
 - LANs and WANs
 - Dial-up Internet access
 - The ubiquitous presence
- VoFR or VoATM
 - Only for the backbone of the carriers

VoIP Challenges

- VoIP must offer the same reliability and voice quality as PSTN.
- Mean Opinion Score (MOS)
 - 5 (Excellent), 4 (Good), 3 (Fair), 2 (Poor), 1 (Bad)
 - International Telecommunication Union
 Telecommunications Standardization Sector (ITU-T) P.800
 - Toll quality means a MOS of 4.0 or better.

Lower Bandwidth Requirements

PSTN

- G.711 64 kbps
- Human speech frequency < 4K Hz
- The Nyquist Theorem: 8000 samples per second
- 8K * 8 bits
- Sophisticated coders
 - 32kbps, 16kbps, 8kbps, 6.3kbps, 5.3kbps
 - GSM 13kbps
 - Save more bandwidth by silence-detection
- Traditional telephony networks can use coders, too.
 - But it is more difficult.
- VoIP two ends of the call negotiate the coding scheme

Speech-coding Techniques

- In general, coding techniques are such that speech quality degrades as bandwidth reduces.
 - The relationship is not linear.

G.711	64kbps	4.3
G.726	32kbps	4.0
• G.723 (celp)	6.3kbps	3.8
G.728	16kbps	3.9
G.729	8kbps	4.0
GSM	13kbps	3.7
iLBC	13.3kbps	3.9

Speech Quality

- Must be as good as PSTN
- Delay
 - The one-way delay
 - Coding/Decoding + Buffering Time + Tx. Time
 - G.114 < 150 ms
- Jitter
 - Delay variation
 - Different routes or queuing times
 - Adjusting to the jitter is difficult
 - Jitter buffers add delay

Speech Quality

- Echo
 - High Delay ===> Echo is Critical
- Packet Loss
 - Traditional retransmission cannot meet the real-time requirements
- Call Set-up Time
 - Address Translation
 - Directory Access

Managing Access and Prioritizing Traffic

- A single network for a wide range of applications
- Call is admitted if sufficient resources are available
- Different types of traffic are handled in different ways
 - If a network becomes heavily loaded, e-mail traffic should feel the effects before synchronous traffic (such as voice).
- QoS has required huge efforts

Network Reliability and Scalability

- PSTN system fails
 - 99.999% reliability
- Today's VoIP solutions
 - Redundancy and load sharing
 - Scalable easy to start on a small scale and then expand as traffic demand increases

- IP-based PBX solutions
 - A single network
 - Enhanced services

VoIP Implementations

- IP voice mail
 - One of the easiest applications
- IP call centers
 - Use the caller ID
 - Automatic call distribution (ACD)
 - Load the customer's information on the agent's desktop (CRM – Customer Relationship Management)
 - Click to talk

VoIP Evolution

1: PC to PC (iPhone in 1995)

3: Phone to Phone over IP/PSTN

2: Phone to PC over IP

4: PC to PC over IP/PSTN

Overview of the Following Chapters [1/2]

- Chapter 2, "Transporting Voice by Using IP"
 - A review of IP networking in general to understand what IP offers, why it is a best-effort protocol, and why carrying real-time traffic over IP has significant challenges
 - RTP (Real-Time Transport Protocol)
- Chapter 3, "Voice-coding Techniques"
 - Choosing the right coding scheme for a particular network or application is not necessarily a simple matter.
- Chapter 4, "H.323"
 - H.323 has been the standard for VoIP for several years.
 - It is the most widely deployed VoIP technology.
- Chapter 5, "The Session Initiation Protocol"
 - The rising star of VoIP technology
 - The simplicity of SIP is one of the greatest advantages
 - Also extremely flexible (a range of advanced feature supported)

Overview of the Following Chapters [2/2]

- Chapter 6, "Media Gateway Control and the Softswitch Architecture"
 - Interworking with PSTN is a major concern in the deployment of VoTP networks
 - The use of gateways
 - They enables a widely distributed VoIP network architecture, whereby call control can be centralized.
- Chapter 7, "VoIP and SS7"
 - H.323, SIP, MGCP and MEGACO are all signaling systems.
 - The state of the art in PSTN signaling is SS7.
 - Numerous services are provided by SS7.
- Chapter 8, "QoS"
 - A VoIP network must face to meet the stringent performance requirements that define a carrier-grade network.
- Chapter 9, "Designing a Voice over IP Network"
 - How to build redundancy and diversity into a VoIP network without losing sight of the trade-off between network quality and network cost (network dimensioning, traffic engineering and traffic routing)?

Course Outline

- Introduction
- Real-time Transport Protocol (RTP)
- The Session Initiation Protocol (SIP)
- Network Address Translation (NAT) Issues and Countermeasure
- (optional) Deploying a Voice over IP Network
- (optional) VoIP Service