

Cx51 Compiler
Optimizing C Compiler and Library Reference

for Classic and Extended 8051 Microcontrollers

User’s Guide 09.2001

2

Information in this document is subject to change without notice and does not
represent a commitment on the part of the Keil Software, Inc. The software
described in this document is furnished under license agreement or
nondisclosure agreement and may be used or copied only in accordance with the
terms of the agreement. It is against the law to copy the software on any medium
except as specifically allowed in the license or nondisclosure agreement. The
purchaser may make one copy of the software for backup purposes. No part of
this manual may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or through
information storage and retrieval systems, for any purpose other than for the
purchaser’s personal use, without the express written permission of Keil
Software, Inc.

© Copyright 1988-2001 Keil Elektronik GmbH. and Keil Software, Inc.
All rights reserved.

Keil C51™, Keil CX51™, and µVision2 are a trademarks of Keil Elektronik
GmbH.
Microsoft® and Windows™ are trademarks or registered trademarks of
Microsoft Corporation.
IBM®, PC®, and PS/2® are registered trademarks of International Business
Machines Corporation.
Intel®, MCS® 51, MCS® 251, ASM-51®, and PL/M-51® are registered
trademarks of Intel Corporation.

Every effort is made to ensure accuracy in this manual and to give appropriate
credit to persons, companies, and trademarks referred to herein.

Keil Software — Cx51 Compiler User’s Guide 3

Preface
This manual describes how to use the Cx51 Optimizing C Compilers to compile
C programs for your target 8051 environment. The Cx51 Compiler package may
be used on all 8051 family processors and is executable under the Windows 32-
Bit command line prompt. This manual assumes that you are familiar with the
Windows operating system, know how to program 8051 processors, and have a
working knowledge of the C programming language.

NOTE
This manual uses the term Windows to refer to the 32-bit Windows Versions
Windows 95, Windows 98, Windows ME, Windows NT, Windows 2000 and
Windows XP.

If you have questions about programming in C, or if you would like more
information about the C programming language, refer to “Books About the C
Language” on page 16.

Many of the examples and descriptions in this manual discuss invoking the
compiler from the Windows command prompt. While this may not be applicable
to you if you are running Cx51 within an integrated development environment
like µVision2, examples in this manual are universal and apply to all
programming environments.

4 Contents

Manual Organization
This user’s guide is divided into the following chapters and appendices:

“Chapter 1. Introduction,” describes the Cx51 compiler.

“Chapter 2. Compiling with the Cx51,” explains how to compile a source file
using the Cx51 cross compiler. This chapter describes the command-line
directives that control file processing, compiling, and output.

“Chapter 3. Language Extensions,” describes the C language extensions
required to support the 8051 system architecture. This chapter provides a
detailed list of commands, functions, and controls that are not found in the ANSI
C Specification.

“Chapter 4. Preprocessor,” describes the components of the Cx51 compiler
preprocessor and includes examples.

“Chapter 5. 8051 Derivatives,” describes the 8051 family derivatives supported
by the Cx51 compiler. This chapter also includes tips that may help you
improve your target program’s performance.

“Chapter 6. Advanced Programming Techniques,” lists important information
for the experienced developer. This chapter includes customization file
descriptions, optimizer details, and segment naming conventions. This chapter
also discusses how to interface programs created with the Cx51 compiler with
other 8051 programming languages.

“Chapter 7. Error Messages,” lists fatal errors, syntax errors, and warnings you
may encounter while using the Cx51 compiler.

“Chapter 8. Library Reference,” provides you with an extensive Cx51 library
reference. The library routines are listed by category and by include file. An
alphabetical reference section, which includes example code for each of the
library routines, concludes this chapter.

The Appendix includes information on the differences between compiler
versions, writing code, and other items of interest.

Keil Software — Cx51 Compiler User’s Guide 5

Document Conventions
This document uses the following conventions:

Examples Description

README.TXT Bold capitalized text is used for the names of executable programs, data files,
source files, environment variables, and commands you enter at the Windows
command prompt. This text usually represents commands that you must type
in manually (capital letters are not required).

Example: CLS DIR BL51.EXE
Language
Elements

Elements of the C language are presented in bold type including keywords,
operators and library functions.
Example: if != long
 isdigit main >>

Courier Text in this typeface represents information that displays on screen or prints
out. This font is also used within the text when discussing or describing
command line items.

Variables Text in italics represents information that you must provide. For example,
projectfile in a syntax string means that you are required to supply the actual
project filename.
Occasionally, italics are also used to emphasize words in the text.

Elements that
repeat…

Ellipses (…) are used in examples to indicate an item that may be repeated.

Omitted code
 .
 .
 .

Vertical ellipses are used in source code examples to indicate a fragment of the
program is omitted.
Example:
void main (void) {
.
.
.
while (1);

�Optional Items� Optional arguments in command-line and option fields are indicated by double
brackets.

Example: C51 TEST.C PRINT ����(filename)����

{ opt1 | opt2 } Text contained within braces, separated by a vertical bar, represents a group of
items from which one item in the list must be selected.

� Braces enclose all of the choices.

� Vertical bars separate the choices.

Keys Text in the sans serif typeface represents keys on the keyboard. For example,
“Press Enter to continue.”

6 Contents

Keil Software — Cx51 Compiler User’s Guide 7

Contents
Chapter 1. Introduction..15

Support for all 8051 Variants.. 15
Books About the C Language ... 16

Chapter 2. Compiling with the Cx51 Compiler ...17
Environment Variables ... 17
Running Cx51 from the Command Prompt... 18

ERRORLEVEL... 19
Cx51 Output Files ... 19

Control Directives... 20
Directive Categories.. 20

Reference .. 23
AREGS / NOAREGS.. 24
ASM / ENDASM .. 26
BROWSE.. 28
CODE.. 29
COMPACT ... 30
COND / NOCOND ... 31
DEBUG... 33
DEFINE .. 34
DISABLE.. 35
EJECT... 37
FLOATFUZZY... 38
INCDIR... 39
INTERVAL... 40
INTPROMOTE / NOINTPROMOTE .. 41
INTVECTOR / NOINTVECTOR .. 44
LARGE ... 46
LISTINCLUDE... 47
MAXARGS... 48
MOD517 / NOMOD517 ... 49
MODA2 / NOMODA2 ... 51
MODAB2 / NOMODAB2 .. 52
MODDA2 / NOMODDA2.. 53
MODDP2 / NOMODDP2... 54
MODP2 / NOMODP2... 55
NOAMAKE .. 56
NOEXTEND... 57
OBJECT / NOOBJECT .. 58
OBJECTADVANCE .. 59
OBJECTEXTEND.. 60
ONEREGBANK ... 61
OMF2.. 62
OPTIMIZE.. 63

8 Contents

ORDER ...65
PAGELENGTH ..66
PAGEWIDTH...67
PREPRINT..68
PRINT / NOPRINT...69
REGFILE ..70
REGISTERBANK ..71
REGPARMS / NOREGPARMS ...72
RET_PSTK, RET_XSTK ..74
ROM..76
SAVE / RESTORE..77
SMALL ...78
SRC ...79
STRING ..80
SYMBOLS..81
USERCLASS ..82
VARBANKING ..84
WARNINGLEVEL...85
XCROM ..86

Chapter 3. Language Extensions ...89
Keywords ..89
Memory Areas...90

Program Memory ..90
Internal Data Memory ...91

External Data Memory..92
Far Memory...93
Special Function Register Memory ...93

Memory Models..94
Small Model ..94
Compact Model ...95
Large Model ..95

Memory Types ..95
Explicitly Declared Memory Types...96
Implicit Memory Types ...97

Data Types ..97
Bit Types...98
Bit-addressable Objects...99
Special Function Registers ..101

sfr ..101
sfr16 ..102
sbit ...102

Absolute Variable Location ..104
Pointers ...106

Generic Pointers ..106
Memory-specific Pointers..109
Pointer Conversions ..111
Abstract Pointers ...114

Keil Software — Cx51 Compiler User’s Guide 9

Function Declarations ... 118
Function Parameters and the Stack ... 119
Passing Parameters in Registers .. 120
Function Return Values... 120
Specifying the Memory Model for a Function .. 121
Specifying the Register Bank for a Function... 122
Register Bank Access.. 124
Interrupt Functions .. 125
Reentrant Functions .. 129
Alien Function (PL/M-51 Interface) ... 132
Real-time Function Tasks.. 133

Chapter 4. Preprocessor ...135
Directives.. 135
Stringize Operator... 136
Token-pasting operator ... 137
Predefined Macro Constants ... 138

Chapter 5. 8051 Derivatives ...139
Analog Devices MicroConverter B2 Series.. 140
Atmel 89x8252 and Variants .. 141
Dallas 80C320, 420, 520, and 530.. 142
Dallas 80C390, 80C400, 5240, and Variants.. 143

Arithmetic Accelerator.. 144
Infineon C517, C509, 80C537, and Variants.. 145

Data Pointers... 145
High-speed Arithmetic .. 146
Library Routines.. 146

Philips 8xC750, 8xC751, and 8xC752.. 147
Philips 80C51MX Architecture .. 148
Philips and Atmel WM Dual DPTR ... 148

Chapter 6. Advanced Programming Techniques...149
Customization Files .. 150

STARTUP.A51... 151
INIT.A51... 153
XBANKING.A51 ... 154
Basic I/O Functions... 156
Memory Allocation Functions... 156

Optimizer .. 157
General Optimizations .. 157
8051-Specific Optimizations... 158
Options for Code Generation .. 158

Segment Naming Conventions.. 159
Data Objects.. 160
Program Objects.. 161

Interfacing C Programs to Assembler ... 163
Function Parameters.. 163

10 Contents

Parameter Passing in Registers..164
Parameter Passing in Fixed Memory Locations ..165
Function Return Values ...165
Using the SRC Directive ...166
Register Usage...168
Overlaying Segments...168
Example Routines..168
Small Model Example ...169
Compact Model Example ..171
Large Model Example ...173

Interfacing C Programs to PL/M-51..175
Data Storage Formats..176

Bit Variables..176
Signed and Unsigned Characters, Pointers to data, idata, and pdata177
Signed and Unsigned Integers, Enumerations, Pointers to xdata and
code ...177
Signed and Unsigned Long Integers..177
Generic and Far Pointers ...178
Floating-point Numbers...179
Floating-point Errors ...182

Accessing Absolute Memory Locations..184
Absolute Memory Access Macros...184
Linker Location Controls ..185
The _at_ Keyword ...186

Debugging...187
Chapter 7. Error Messages ..189

Fatal Errors ...189
Actions ..190
Errors...191

Syntax and Semantic Errors ..193
Warnings ...205

Chapter 8. Library Reference..209
Intrinsic Routines ..209
Library Files..210
Standard Types..211

jmp_buf ...211
va_list ..211

Absolute Memory Access Macros...212
CBYTE..212
CWORD..212
DBYTE ...213
DWORD..213
FARRAY, FCARRAY ...214
FVAR, FCVAR, ..215
PBYTE..216
PWORD ..216

Keil Software — Cx51 Compiler User’s Guide 11

XBYTE ... 217
XWORD ... 217

Routines by Category.. 218
Buffer Manipulation.. 218
Character Conversion and Classification .. 219
Data Conversion.. 220
Math Routines ... 221
Memory Allocation Routines .. 223
Stream Input and Output Routines .. 224
String Manipulation Routines ... 226
Variable-length Argument List Routines... 227
Miscellaneous Routines... 227

Include Files.. 228
8051 Special Function Register Include Files ... 228
80C517.H.. 228
ABSACC.H... 229
ASSERT.H.. 229
CTYPE.H.. 229
INTRINS.H... 229
MATH.H... 230
SETJMP.H .. 230
STDARG.H... 230
STDDEF.H ... 230
STDIO.H... 231
STDLIB.H... 231
STRING.H .. 231

Reference .. 232
abs ... 233
acos / acos517 ... 234
asin / asin517... 235
assert ... 236
atan / atan517 .. 237
atan2.. 238
atof / atof517 ... 239
atoi .. 240
atol .. 241
cabs ... 242
calloc... 243
ceil... 244
chkfloat ... 245
cos / cos517... 246
cosh ... 247
crol .. 248
cror.. 249
exp / exp517.. 250
fabs.. 251
floor... 252

12 Contents

fmod ..253
free ..254
getchar ...255
_getkey ..256
gets ..257
init_mempool...258
irol ...259
iror...260
isalnum ..261
isalpha ...262
iscntrl...263
isdigit...264
isgraph ...265
islower ...266
isprint...267
ispunct ...268
isspace ...269
isupper ...270
isxdigit...271
labs ..272
log / log517 ...273
log10 / log10517 ...274
longjmp ...275
lrol ...277
lror...278
malloc..279
memccpy ...280
memchr..281
memcmp ..282
memcpy ...283
memmove ..284
memset ..285
modf ..286
nop...287
offsetof ..288
pow..289
printf / printf517 ..290
putchar...296
puts ..297
rand..298
realloc..299
scanf ..300
setjmp ..304
sin / sin517 ..305
sinh ..306
sprintf / sprintf517 ...307
sqrt / sqrt517..309

Keil Software — Cx51 Compiler User’s Guide 13

srand.. 310
sscanf / sscanf517.. 311
strcat.. 313
strchr ... 314
strcmp.. 315
strcpy... 316
strcspn ... 317
strlen.. 318
strncat.. 319
strncmp.. 320
strncpy... 321
strpbrk ... 322
strpos... 323
strrchr .. 324
strrpbrk.. 325
strrpos.. 326
strspn... 327
strstr .. 328
strtod / strtod517 ... 329
strtol .. 331
strtoul .. 333
tan / tan517.. 335
tanh.. 336
testbit... 337
toascii .. 338
toint ... 339
tolower .. 340
_tolower .. 341
toupper .. 342
_toupper .. 343
ungetchar... 344
va_arg.. 345
va_end... 347
va_start.. 348
vprintf.. 349
vsprintf .. 351

Appendix A. Differences from ANSI C...353
Compiler-related Differences.. 353
Library-related Differences... 353

Appendix B. Version Differences...357
Version 6.0 Differences .. 357
Version 5 Differences ... 358
Version 4 Differences ... 359
Version 3.4 Differences .. 361
Version 3.2 Differences .. 362
Version 3.0 Differences .. 363

14 Contents

Version 2 Differences ...364
Appendix C. Writing Optimum Code ...367

Memory Model ...367
Variable Location..369
Variable Size...369
Unsigned Types...370
Local Variables ...370
Other Sources..370

Appendix D. Compiler Limits..371
Appendix E. Byte Ordering..373
Appendix F. Hints, Tips, and Techniques...375

Recursive Code Reference Error...375
Problems Using the printf Routines ..376
Uncalled Functions..377
Using Monitor-51..377
Trouble with the bdata Memory Type...378
Function Pointers ..379

Glossary...383
Index..391

Keil Software — Cx51 Compiler User’s Guide 15

 1

Chapter 1. Introduction
The C programming language is a general-purpose programming language that
provides code efficiency, elements of structured programming, and a rich set of
operators. C is not a big language and is not designed for any one particular area
of application. Its generality combined with its absence of restrictions, makes C
a convenient and effective programming solution for a wide variety of software
tasks. Many applications can be solved more easily and efficiently with C than
with other more specialized languages.

The Cx51 Optimizing C Compiler is a complete implementation of the American
National Standards Institute (ANSI) standard for the C language. Cx51 is not a
universal C compiler adapted for the 8051 target. It is a ground-up
implementation dedicated to generating extremely fast and compact code for the
8051 microprocessor. Cx51 provides you with the flexibility of programming in
C and the code efficiency and speed of assembly language.

The C language on its own is not capable of performing operations (such as input
and output) that would normally require intervention from the operating system.
Instead, these capabilities are provided as part of the standard library. Because
these functions are separate from the language itself, C is especially suited for
producing code that is portable across a wide number of platforms.

Since Cx51 is a cross compiler, some aspects of the C programming language
and standard libraries are altered or enhanced to address the peculiarities of an
embedded target processor. Refer to “Chapter 3. Language Extensions” on page
89 for more detailed information.

Support for all 8051 Variants
The 8051 Family is one of the fastest growing Microcontroller Architectures.
More than 400 device variants from various silicon vendors are today available.
New extended 8051 Devices, like the Philips 80C51MX architecture are
deticated for large application with several Mbytes code and data space.

For optimum support of these different 8051 variants, Keil provides the several
development tools that are listed in the table below. A new output file format
(OMF2) allows direct support of up to 16MB code and data space. The CX51
compiler is a variant of the C51 compiler that is designed for the new Philips
80C51MX architecture.

16 Chapter 1. Introduction

1

Development Tools Support Microcontrollers, Description

C51 Compiler
A51 Macro Assembler
BL51 Linker/Locater

Development Tools for classic 8051.
Includes support for 32 x 64KB code banks.

C51 Compiler (with OMF2 Output)
AX51 Macro Assembler
LX51 Linker/Locater

Development Tools for classic 8051 and extended
8051 variants (like the Dallas 390). Includes support
for code banking and up to 16MB code and xdata
memory.

CX51 Compiler
AX51 Macro Assembler
LX51 Extended Linker/Locater

Development Tools for the Philips 80C51MX
Supports up to 16MB code and xdata memory.

The Cx51 compiler is available in different packages. The table above
refers to the entire line of the 8051 development tools.

NOTE
The term Cx51 is used to refer to both compiler variants: the C51 compiler and
the CX51 compiler.

Books About the C Language
There are a number of books that provide an introduction to the C programming
language. There are even more books that detail specific tasks using C. The
following list is by no means a complete list of books on the subject. The list is
provided only as a reference for those who wish more information.

The C Programming Language, Second Edition
Kernighan & Ritchie
Prentice-Hall, Inc.
ISBN 0-13-110370-9

C: A Reference Manual, Second Edition
Harbison & Steel
Prentice-Hall Software Series
ISBN 0-13-109810-1

C and the 8051: Programming and Multitasking
Schultz
P T R Prentice-Hall, Inc.
ISBN 0-13-753815-4

Keil Software — Cx51 Compiler User’s Guide 17

 2

Chapter 2. Compiling with the Cx51
Compiler

This chapter explains how to compile C source files and discusses the compiler
control directives. These directives allow you to:

� Direct the Cx51 compiler to generate a listing file

� Control the amount of information included in the object file

� Specify optimization level and memory models

NOTE
Typically you will use the Cx51 compiler within the µVision2 IDE. For more
information on using the µVision2 IDE, refer to the User’s Guide “Getting
Started with µVision2 and C51”.

Environment Variables
If you run the Cx51 compiler within the µVision2 IDE, you need no additional
settings on your computer. If you want to run the Cx51 compiler and utilities
from the command prompt, you must manually create the following environment
variables.

Variable Path Environment Variable specifies …

PATH \C51\BIN path of the C51 and CX51 executable programs.

TMP path to use for temporary files generated by the compiler. If the
specified path does not exist, the compiler generates an error and
aborts compilation.

C51INC \C51\INC path to the folder for Cx51 include files.
C51LIB \C51\LIB path to the folder for Cx51 library files.

For Windows NT, Windows 2000 and Windows XP these environment variables
are entered under Control Panel – System – Advanced – Environment
Variables.

For Windows 95, Windows 98 and Windows ME the settings are placed in
AUTOEXEC.BAT using the following commands:

PATH=C:\KEIL\C51\BIN;%PATH%
SET TMP=D:\

18 Chapter 2. Compiling with the Cx51 Compiler

2

SET C51INC=C:\KEIL\C51\INC
SET C51LIB=C:\KEIL\C51\LIB

Running Cx51 from the Command Prompt
To invoke the C51 or CX51 compiler, enter C51 or CX51 at the command
prompt. On this command line, you must include the name of the C source file
to be compiled, as well as any other necessary control directives required to
compile your source file. The format for the Cx51 command line is:

C51 sourcefile ����directives…����

CX51 sourcefile ����directives…����

or:
C51 @commandfile
CX51 @commandfile

where:

sourcefile is the name of the source program you want to compile.

directives are the directives you want to use to control the function of the
compiler. Refer to “Control Directives” on page 20 for a
detailed list of the available directives.

commandfile is the name of a command input file that may contain sourcefile
and directives. A commandfile is used, when the Cx51
invocation line gets complex and exceeds the limits of the
Windows command prompt.

The following command line example invokes C51, specifies the source file
SAMPLE.C, and uses the controls DEBUG, CODE, and PREPRINT.

C51 SAMPLE.C DEBUG CODE PREPRINT

The Cx51 compiler displays the following information upon successful
compilation.

C51 COMPILER V6.10

C51 COMPILATION COMPLETE. 0 WARNING(S), 0 ERROR(S)

Keil Software — Cx51 Compiler User’s Guide 19

 2

ERRORLEVEL
After compilation, the number of errors and warnings detected is output to the
screen. The Cx51 compiler then sets the ERRORLEVEL to indicate the status of
the compilation. Values are listed in the following table:

ERRORLEVEL Meaning

0 No errors or warnings

1 Warnings only

2 Errors and possibly warnings

3 Fatal errors

You can access the ERRORLEVEL variable in batch files. Refer to the Windows
command index or to batch commands in the Windows on-line help for more
information on ERRORLEVEL or batch files.

Cx51 Output Files
The Cx51 compiler generates a number of output files during compilation. By
default, each of these output files shares the same filename as the source file.
However, each has a different file extension. The following table lists the files
and gives a brief description of each.

File Extension Description

filename.LST Files with this extension are listing files that contain the formatted source
text along with any errors detected by the compiler. Listing files may
optionally contain the symbols used and the assembly code generated.
For more information, refer to the PRINT directive in the following sections.

filename.OBJ Files with this extension are object modules that contain relocatable object
code. Object modules may be linked to an absolute object module by the
Lx51 Linker/Locator.

filename.I Files with this extension contain the source text as expanded by the
preprocessor. All macros are expanded and all comments are deleted in
this listing. For more information, refer to the PREPRINT directive in the
following sections.

filename.SRC Files with this extension are assembly source files generated from your C
source code. These files can be assembled with the A51 assembler. For
more information, refer to the SRC directive in the following sections.

20 Chapter 2. Compiling with the Cx51 Compiler

2

Control Directives
The Cx51 compiler offers a number of control directives that you may use to
control compilation. Directives are composed of one or more letters or digits
and, unless otherwise specified, can be specified after the filename on the
command line or within a source file using the #pragma directive. For example:

C51 testfile.c SYMBOLS CODE DEBUG

#pragma SYMBOLS CODE DEBUG

In the above examples, SYMBOLS, CODE, and DEBUG are all control directives.
testfile.c is the source file to be compiled.

NOTE
The syntax is the same for the command line and the #pragma directive.
Multiple options, however, may be specified on the #pragma line.

Typically, each control directive may be specified only once at the beginning of
a source file. If a directive is specified more than once, the compiler generates a
fatal error and aborts compilation. Directives that may be specified more than
once are so noted in the following sections.

Directive Categories
Control directives can be divided into three groups: source controls, object
controls, and listing controls.

� Source controls define macros on the command line and determine the name
of the file to be compiled.

� Object controls affect the form and content of the generated object module
(*.OBJ). These directives allow you to specify the optimizing level or
include debugging information in the object file.

� Listing controls govern various aspects of the listing file (*.LST), in
particular its format and specific content.

Keil Software — Cx51 Compiler User’s Guide 21

 2

The following table is an alphabetical list of the control directives. The
underlined characters denote the abbreviation of the directive.

Directive Class Description

AREGS,
NOAREGS

Object Enable or disable absolute register (ARn) addressing.

ASM, ENDASM Source Marks the beginning and the end of an inline assembly block.

BROWSE † Object Enable generation of browser information.

CODE † Listing Add an assembly listing to the listing file.

COMPACT † Object Select COMPACT memory model.

COND,
NOCOND †

Listing Include or exclude source lines skipped by the preprocessor.

DEBUG † Object Include debugging information in the object file.

DEFINE Source Define preprocessor names in the Cx51 invocation line.

DISABLE Object Disables interrupts for the duration of a function.

EJECT Listing Inserts a form feed character into the listing file.

FLOATFUZZY Object Specify number of bits rounded during floating compare.

INCDIR † Source Specify additional path names for include files.

INTERVAL † Object Specify the interval for interrupt vectors for SIECO chips.

INTPROMOTE,
NOINTPROMOTE †

Object Enable or disable ANSI integer promotion.

INTVECTOR,
NOINTVECTOR †

Object Specify base address for interrupt vectors or disable vectors.

LARGE † Object Select LARGE memory model.

LISTINCLUDE Listing Display contents of include files in the listing file.

MAXARGS † Object Specify size of variable argument lists.

MOD517,
NOMOD517

Object Enable or disable code to support the additional hardware
features of the 80C517 and derivatives.

MODA2,
NOMODA2

Object Enable or disable dual DPTR register support for Atmel 82x8252
and variants.

MODAB2,
NOMODAB2

Object Enable or disable dual DPTR register support for Analog Device
MicroConverter ADuC B2 series.

MODDA,
NOMODDA

Object Enable or disable code to support the arithmetic accelerator
available in Dallas 80C390, 80C400, and 5240.

MODDP2,
NOMODDP2

Object Enable or disable dual DPTR register support for Dallas
Semiconductor 320, 520, 530, 550 and variants.

MODP2,
NOMODP2

Object Enable or disable dual DPTR register support for Philips and
AtmelWM derivatives.

NOAMAKE † Object Disable information records for µVision2 Update function.
NOEXTEND † Source Disable Cx51 extensions to ANSI C.

OBJECT,
NOOBJECT †

Object Specify a name for the object file or suppress the object file.

OBJECTEXTEND † Object Include additional variable type information in the object file.

ONEREGBANK Object Assume that only registerbank 0 is used in interrupt code.

22 Chapter 2. Compiling with the Cx51 Compiler

2

Directive Class Description

OMF2 † Object Generate OMF2 output file format.

OPTIMIZE Object Specify the level of optimization performed by the compiler.

ORDER † Object Allocate variables in the order of their appearance in the source
file.

PAGELENGTH † Listing Specify the number of rows on the page.

PAGEWIDTH † Listing Specify the number of columns on the page.

PREPRINT † Listing Produce a preprocessor listing file where all macros are
expanded.

PRINT, NOPRINT † Listing Specify a name for the listing file or disable the listing file.

REGFILE † Object Specify a register definition file for global register optimization.

REGISTERBANK Object Select the register bank to use for absolute register accesses.

REGPARMS,
NOREGPARMS

Object Enable or disable register parameter passing.

RET_PSTK †,
RET_XSTK †

Object Use reentrant stack for saving return addresses.

ROM † Object Control generation of AJMP/ACALL instructions.

SAVE,
RESTORE

Object Saves and restores settings for AREGS, REGPARMS and
OPTIMIZE directives.

SMALL † Object Select SMALL memory model. (Default.)

SRC † Object Create an assembler source file instead of an object module.

STRING † Object Locate implicit string constants to xdata or far memory.

SYMBOLS † Listing Include a list of all symbols used within the module in the listing
file.

USERCLASS † Object Renames memory class names for flexible variable location.

VARBANKING † Object Enable far memory type variables.
WARNINGLEVEL † Listing Select the level of Warning detection.

XCROM † Object Assume ROM space for const xdata variables.
† These directives may be specified only once on the command line or at the beginning of a source

file using in the #pragma statement. They may not be used more than once in a source file.

Control directives and their arguments, with the exception of arguments
specified with the DEFINE directive, are not case sensitive.

Keil Software — Cx51 Compiler User’s Guide 23

 2

Reference
The remainder of this chapter describes each of the available Cx51 compiler
control directives listed in alphabetical order. They are divided into the
following sections:

Abbreviation: Gives any abbreviations that may be substituted for the
directive name.

Arguments: Describes and lists optional and required directive
arguments.

Default: Shows the directive’s default setting.

µVision2 Control: Lists how to specify the directive.

Description: Provides a detailed description of the directive and how to
use it.

See Also: Names related directives.

Example: Shows you an example of how to use and, sometimes, the
effects of the directive.

24 Chapter 2. Compiling with the Cx51 Compiler

2

AREGS / NOAREGS

Abbreviation: None.

Arguments: None.

Default: AREGS

µVision2 Control: Options – C51 – Don’t use absolute register accesses.

Description: The AREGS control causes the compiler to use absolute
register addressing for registers R0 through R7. Absolute
addressing improves the efficiency of the generated code.
For example, PUSH and POP instructions function only
with direct or absolute addresses. Using the AREGS
directive allows you to directly push and pop registers.

You may use the REGISTERBANK directive to define
which register bank to use.

The NOAREGS directive disables absolute register
addressing for registers R0 through R7. Functions which are
compiled with NOAREGS are not dependent on the register
bank and may use all 8051 register banks. This directive
may be used for functions that are called from other
functions using different register banks.

NOTE
Though it may be defined several times in a program, the
AREGS / NOAREGS option is valid only when defined
outside of a function declaration.

Keil Software — Cx51 Compiler User’s Guide 25

 2

Example: The following is a source and code listing which uses both
NOAREGS and AREGS.

 stmt level source
1 extern char func ();
2 char k;
3
4 #pragma NOAREGS
5 noaregfunc () {
6 1 k = func () + func ();
7 1 }
8
9 #pragma AREGS
10 aregfunc () {
11 1 k = func () + func ();
12 1 }

; FUNCTION noaregfunc (BEGIN)
; SOURCE LINE # 6

0000 120000 E LCALL func
0003 EF MOV A,R7
0004 C0E0 PUSH ACC
0006 120000 E LCALL func
0009 D0E0 POP ACC
000B 2F ADD A,R7
000C F500 R MOV k,A

; SOURCE LINE # 7
000E 22 RET

; FUNCTION noaregfunc (END)

; FUNCTION aregfunc (BEGIN)
; SOURCE LINE # 11

0000 120000 E LCALL func
0003 C007 PUSH AR7
0005 120000 E LCALL func
0008 D0E0 POP ACC
000A 2F ADD A,R7
000B F500 R MOV k,A

; SOURCE LINE # 12
000D 22 RET

; FUNCTION aregfunc (END)

 Note the different methods of saving R7 on the stack. The
code generated for the function noaregfunc is:

 MOV A,R7
PUSH ACC

 while the code for the aregfunc function is:

 PUSH AR7

26 Chapter 2. Compiling with the Cx51 Compiler

2

ASM / ENDASM

Abbreviation: None.

Arguments: None.

Default: None.

µVision2 Control: This directive may not be specified on the command line.

Description: The ASM directive signals the beginning of a block of
source text to merge into the .SRC file generated using the
SRC directive.

This source text can be thought of as in-line assembly.
However, it is output to the source file generated only when
using the SRC directive. The source text is not assembled
and output to the object file.

In µVision2 you may set a file specific option for C source
files that contain ASM/ENDASM sections as follows:

� Right click on the file in the Project Window – Files tab
� Choose Options for… to open Options – Properties

page
� Enable Generate Assembler SRC file
� Enable Assemble SRC file.

With this setting, µVision2 generates an assembler source
file (.SRC) and translates this file with the Assembler to an
Object file (.OBJ).

The ENDASM directive signals the end of the source text
block.

NOTE
The ASM and ENDASM directives can occur only in the
source file, as part of a #pragma directive.

Keil Software — Cx51 Compiler User’s Guide 27

 2

Example: #pragma asm / #pragma endasm

 The following C source file:

 .
.
.
stmt level source

1 extern void test ();
2
3 main () {
4 1 test ();
5 1
6 1 #pragma asm
7 1 JMP $; endless loop
8 1 #pragma endasm
9 1 }

.

.

.

 generates the following .SRC file.

 ; ASM.SRC generated from: ASM.C
NAME ASM
?PR?main?ASM SEGMENT CODE
EXTRN CODE (test)
EXTRN CODE (?C_STARTUP)
PUBLIC main
; extern void test ();
;
; main () {

RSEG ?PR?main?ASM
USING 0

main:
; SOURCE LINE # 3

; test ();
; SOURCE LINE # 4

LCALL test
;
; #pragma asm

JMP $; endless loop
; #pragma endasm
; }

; SOURCE LINE # 9
RET ; END OF main

END

28 Chapter 2. Compiling with the Cx51 Compiler

2

BROWSE

Abbreviation: BR

Arguments: None.

Default: No browse information is created

µVision2 Control: Options – Output – Browse Information

Description: With BROWSE, the compiler creates browse information.
The browse information covers identifiers (including
preprocessor symbols), their memory space, type, definition-
and reference lists.

This information can be displayed within µVision2. Select
View - Source Browser to open the µVision2 Source
Browser. Refer to the µVision2 Getting Started User’s
Guide, Chapter 4, µVision2 Utilities, Source Browser for
more information.

Example: C51 SAMPLE.C BROWSE

#pragma browse

Keil Software — Cx51 Compiler User’s Guide 29

 2

CODE

Abbreviation: CD

Arguments: None.

Default: No assembly code listing is generated.

µVision2 Control: Options – Listing – C Compiler Listing – Assembly Code.

Description: The CODE directive appends an assembly mnemonics list
to the listing file. The assembler code is represented for
each function contained in the source program. By default,
no assembly code listing is included in the listing file.

Example: C51 SAMPLE.C CD

#pragma code

 The following example shows the C source followed by the
resulting object code and its mnemonics. The line number
of each statement that produced the code is displayed
between the assembly lines. The characters R and E stand
for Relocatable and External, respectively.

 stmt level source
1 extern unsigned char a, b;
2 unsigned char c;
3
4 main()
5 {
6 1 c = 14 + 15 * ((b / c) + 252);
7 1 }

.

.

.
ASSEMBLY LISTING OF GENERATED OBJECT CODE

; FUNCTION main (BEGIN)
; SOURCE LINE # 5
; SOURCE LINE # 6

0000 E500 E MOV A,b
0002 8500F0 R MOV B,c
0005 84 DIV AB
0006 75F00F MOV B,#0FH
0009 A4 MUL AB
000A 24D2 ADD A,#0D2H
000C F500 R MOV c,A

; SOURCE LINE # 7
000E 22 RET

; FUNCTION main (END)

30 Chapter 2. Compiling with the Cx51 Compiler

2

COMPACT

Abbreviation: CP

Arguments: None.

Default: SMALL

µVision2 Control: Options – Target – Memory Model

Description: This directive selects the COMPACT memory model.

In the COMPACT memory model, all function and
procedure variables and local data segments reside in the
external data memory of the 8051 system. This external
data memory may be up to 256 bytes (one page) long. With
this model, the short form of addressing the external data
memory through @R0/R1 is used.

Regardless of memory model type, you may declare
variables in any of the 8051 memory ranges. However,
placing frequently used variables (such as loop counters and
array indices) in internal data memory significantly
improves system performance.

NOTE
The stack required for function calls is always placed in
IDATA memory.

See Also: SMALL, LARGE, ROM

Example: C51 SAMPLE.C COMPACT

#pragma compact

Keil Software — Cx51 Compiler User’s Guide 31

 2

COND / NOCOND

Abbreviation: CO

Arguments: None.

Default: COND

µVision2 Control: Options – Listing – C Compiler Listing – Conditional.

Description: This directive determines whether or not those portions of
the source file affected by conditional compilation are
displayed in the listing file.

The COND directive includes lines omitted from
compilation in the listing file. Line numbers and nesting
levels are not output, making the file easier to read.

The effect of this directive takes place one line after the
preprocessor detects it.

The NOCOND directive excludes lines omitted from
compilation from the listing file.

32 Chapter 2. Compiling with the Cx51 Compiler

2

Example: The following example shows the listing file for a source
file compiled with the COND directive.

 .
.
.
stmt level source

1 extern unsigned char a, b;
2 unsigned char c;
3
4 main()
5 {
6 1 #if defined (VAX)

c = 13;
#elif defined (_ _TIME_ _)

9 1 b = 14;
10 1 a = 15;
11 1 #endif
12 1 }

.

.

.

 The following example shows the listing file for a source
file compiled with the NOCOND directive.

 .
.
.
stmt level source

1 extern unsigned char a, b;
2 unsigned char c;
3
4 main()
5 {
6 1 #if defined (VAX)
9 1 b = 14;
10 1 a = 15;
11 1 #endif
12 1 }

.

.

.

Keil Software — Cx51 Compiler User’s Guide 33

 2

DEBUG

Abbreviation: DB

Arguments: None.

Default: No Debug information is generated.

µVision2 Control: Options – Output – Debug Information

Description: The DEBUG directive instructs the compiler to include
debugging information in the object file. By default,
debugging information is excluded from the generated
object file.

Debug information is necessary for the symbolic testing of
programs. This information contains both global and local
variable definitions and their addresses, as well as function
names and their line numbers. Debug information contained
in each object module remains valid through the
Link/Locate procedure. This information may be used by
the µVision2 debugger or by any of the Intel-compatible
emulators.

NOTE
The OBJECTEXTEND directive can be used to instruct the
compiler to include additional variable type definition
information in the object file.

See Also: OBJECTEXTEND

Example: C51 SAMPLE.C DEBUG

#pragma db

34 Chapter 2. Compiling with the Cx51 Compiler

2

DEFINE

Abbreviation: DF

Arguments: One or more names separated by commas in accordance
with the naming conventions of the C language. An optional
argument can be specified for each name given in the
DEFINE directive.

Default: None.

µVision2 Control: Enter names to define at Options – Cx51 – Define.

Description: The DEFINE directive defines names on the invocation line
which the preprocessor may query with #if, #ifdef and
#ifndef. The defined names are copied exactly as they are
entered. This command is case-sensitive. As an option,
each name may be assigned a value.

NOTE
The DEFINE directive may be specified only on the
command line. Use the C preprocessor #define directive for
use inside a C source.

Example: C51 SAMPLE.C DEFINE (check, NoExtRam)

C51 MYPROG.C DF (X1="1+5",iofunc="getkey ()")

Keil Software — Cx51 Compiler User’s Guide 35

 2

DISABLE

Abbreviation: None.

Arguments: None.

Default: None.

µVision2 Control: This directive may not be specified on the command line. It
may be specified only in the source file.

Description: The DISABLE directive instructs the compiler to generate
code that disables all interrupts for the duration of a
function. DISABLE must be specified with a #pragma
directive immediately before a function declaration. The
DISABLE control applies to one function only and must be
re-specified for each new function.

NOTE
DISABLE may be specified using the #pragma directive
only, and may not be specified on the command line.

DISABLE can be specified more than once in a source file
and must be specified once for each function that is to
execute with interrupts disabled.

A function with disabled interrupts cannot return a bit value
to the caller.

36 Chapter 2. Compiling with the Cx51 Compiler

2

Example: This example is a source and code listing of a function using
the DISABLE directive. Note that the EA special function
register is cleared at the beginning of the function
(JBC EA,?C0002) and restored at the end (MOV EA,C).

 .
.
.
stmt level source

1 typedef unsigned char uchar;
2
3 #pragma disable /* Disable Interrupts */
4 uchar dfunc (uchar p1, uchar p2) {
5 1 return (p1 * p2 + p2 * p1);
6 1 }

; FUNCTION _dfunc (BEGIN)
0000 D3 SETB C
0001 10AF01 JBC EA,?C0002
0004 C3 CLR C
0005 ?C0002:
0005 C0D0 PUSH PSW
;---- Variable 'p1' assigned to register 'R7' ----
;---- Variable 'p2' assigned to register 'R5' ----

; SOURCE LINE # 4
; SOURCE LINE # 5

0007 ED MOV A,R5
0008 8FF0 MOV B,R7
000A A4 MUL AB
000B 25E0 ADD A,ACC
000D FF MOV R7,A

; SOURCE LINE # 6
000E ?C0001:
000E D0D0 POP PSW
0010 92AF MOV EA,C
0012 22 RET

; FUNCTION _dfunc (END)
.
.
.

Keil Software — Cx51 Compiler User’s Guide 37

 2

EJECT

Abbreviation: EJ

Arguments: None.

Default: None.

µVision2 Control: This directive may not be specified on the command line. It
may be specified only in the source file.

Description: The EJECT directive causes a form feed character to be
inserted into the listing file.

NOTE
The EJECT directive occurs only in the source file, and
must be part of a #pragma directive.

Example: #pragma eject

38 Chapter 2. Compiling with the Cx51 Compiler

2

FLOATFUZZY

Abbreviation: FF

Arguments: A number between 0 and 7.

Default: FLOATFUZZY (3)

µVision2 Control: Options – Cx51 – Bits to round for float compare

Description: The FLOATFUZZY directive determines the number of
bits rounded before a floating-point compare is executed.
The default value of 3 specifies that the three least
significant bits of a float value are rounded before the
floating-point compare is executed.

Example: C51 MYFILE.C FLOATFUZZY (2)

#pragma FF (0)

Keil Software — Cx51 Compiler User’s Guide 39

 2

INCDIR

Abbreviation: None.

Arguments: Path specifications for include files enclosed in parentheses.

Default: None.

µVision2 Control: Options – Cx51 – Include Paths.

Description: The INCDIR directive specifies the location of the Cx51
compiler include files. The compiler accepts a maximum of
50 path declarations.
If more than one path declaration is required, the path names
must be separated by semicolons. If you specify #include
“filename.h”, the Cx51 Compiler searches first the current
directory and then the source file directory. When this
search fails or the #include <filename.h> is used, the paths
specified by the INCDIR directive are searched. When
these searches still fail, the paths specified by the C51INC
environment variable are used.

Example: C51 SAMPLE.C INCDIR(C:\KEIL\C51\MYINC;C:\CHIP_DIR)

40 Chapter 2. Compiling with the Cx51 Compiler

2

INTERVAL

Abbreviation: None

Arguments: An optional interval, in parentheses, for the interrupt vector
table.

Default: INTERVAL (8)

µVision2 Control: Options – Cx51 – Misc controls: enter the directive.

Description: The INTERVAL directive specifies an interval for interrupt
vectors. The interval specification is required for SIECO-51
derivatives which define interrupt vectors in 3-byte
intervals. Using this directive, the compiler locates interrupt
vectors at the absolute address calculated by:

(interval × n) + offset + 3,

where:

interval is the argument of the INTERVAL
directive (default 8).

n is the interrupt number.

offset is the argument of the INTVECTOR
directive (default 0).

See Also: INTVECTOR / NOINTVECTOR

Example: C51 SAMPLE.C INTERVAL(3)

#pragma interval(3)

Keil Software — Cx51 Compiler User’s Guide 41

 2

INTPROMOTE / NOINTPROMOTE

Abbreviation: IP / NOIP

Arguments: None.

Default: INTPROMOTE

µVision2 Control: Options – Cx51 – Enable ANSI integer promotion rules.

Description: The INTPROMOTE directive enables ANSI integer
promotion rules. Expressions used in if statements are
promoted from smaller types to integer expressions before
comparison. This allows Microsoft C and Borland C
programs to be ported to Cx51 with fewer modifications.

Since the 8051 is an 8-bit processor, use of the
INTPROMOTE directive may generate less efficient code
in some applications.

The NOINTPROMOTE directive disables automatic
integer promotions. Integer promotions are normally
enabled to provide the greatest compatibility between Cx51
and other ANSI compilers. However, integer promotions
can yield inefficient code on the 8051.

Example: C51 SAMPLE.C INTPROMOTE

#pragma intpromote

C51 SAMPLE.C NOINTPROMOTE

42 Chapter 2. Compiling with the Cx51 Compiler

2

 The following example demonstrates code generated using
the INTPROMOTE and NOINTPROMOTE control
directive.

 stmt lvl source

1 char c;
2 unsigned char c1,c2;
3 int i;
4
5 main () {
6 1 if (c == 0xff) c = 0; /* never true! */
7 1 if (c == -1) c = 1; /* works */
8 1 i = c + 5;
9 1 if (c1 < c2 +4) c1 = 0;
10 1 }

Keil Software — Cx51 Compiler User’s Guide 43

 2

Code generated with INTPROMOTE Code generated with NOINTPROMOTE
; FUNCTION main (BEGIN)

; SOURCE LINE # 6
0000 AF00 MOV R7,c
0002 EF MOV A,R7
0003 33 RLC A
0004 95E0 SUBB A,ACC
0006 FE MOV R6,A
0007 EF MOV A,R7
0008 F4 CPL A
0009 4E ORL A,R6
000A 7002 JNZ ?C0001
000C F500 MOV c,A
000E ?C0001:

; SOURCE LINE # 7
000E E500 MOV A,c
0010 B4FF03 CJNE A,#0FFH,?C0002
0013 750001 MOV c,#01H
0016 ?C0002:

; SOURCE LINE # 8
0016 AF00 MOV R7,c
0018 EF MOV A,R7
0019 33 RLC A
001A 95E0 SUBB A,ACC
001C FE MOV R6,A
001D EF MOV A,R7
001E 2405 ADD A,#05H
0020 F500 MOV i+01H,A
0022 E4 CLR A
0023 3E ADDC A,R6
0024 F500 MOV i,A

; SOURCE LINE # 9
0026 E500 MOV A,c2
0028 2404 ADD A,#04H
002A FF MOV R7,A
002B E4 CLR A
002C 33 RLC A
002D FE MOV R6,A
002E C3 CLR C
002F E500 MOV A,c1
0031 9F SUBB A,R7
0032 EE MOV A,R6
0033 6480 XRL A,#080H
0035 F8 MOV R0,A
0036 7480 MOV A,#080H
0038 98 SUBB A,R0
0039 5003 JNC ?C0004
003B E4 CLR A
003C F500 MOV c1,A

; SOURCE LINE # 10
003E ?C0004:
003E 22 RET

; FUNCTION main (END)

 ; FUNCTION main (BEGIN)
; SOURCE LINE # 6

0000 AF00 MOV R7,c
0002 EF MOV A,R7
0003 33 RLC A
0004 95E0 SUBB A,ACC
0006 FE MOV R6,A
0007 EF MOV A,R7
0008 F4 CPL A
0009 4E ORL A,R6
000A 7002 JNZ ?C0001
000C F500 MOV c,A
000E ?C0001:

; SOURCE LINE # 7
000E E500 MOV A,c
0010 B4FF03 CJNE A,#0FFH,?C0002
0013 750001 MOV c,#01H
0016

; SOURCE LINE # 8
0016 E500 MOV A,c
0018 2405 ADD A,#05H
001A FF MOV R7,A
001B 33 RLC A
001C 95E0 SUBB A,ACC
001E F500 MOV i,A
0020 8F00 MOV i+01H,R7

; SOURCE LINE # 9
0022 E500 MOV A,c2
0024 2404 ADD A,#04H
0026 FF MOV R7,A
0027 E500 MOV A,c1
0029 C3 CLR C
002A 9F SUBB A,R7
002B 5003 JNC ?C0004
002D E4 CLR A
002E F500 MOV c1,A

; SOURCE LINE # 10
0030 ?C0004:
0030 22 RET

; FUNCTION main (END)

CODE SIZE = 63 Bytes CODE SIZE = 49 Bytes

44 Chapter 2. Compiling with the Cx51 Compiler

2

INTVECTOR / NOINTVECTOR

Abbreviation: IV / NOIV

Arguments: An optional offset, in parentheses, for the interrupt vector
table.

Default: INTVECTOR (0)

µVision2 Control: Options – Cx51 – Misc controls: enter the directive.

Description: The INTVECTOR directive instructs the compiler to
generate interrupt vectors for functions which require them.
An offset may be entered if the vector table starts at an
address other than 0.

Using this directive, the compiler generates an interrupt
vector entry using either an AJMP or LJMP instruction
depending upon the size of the program memory specified
with the ROM directive.

The NOINTVECTOR directive prevents the generation of
an interrupt vector table. This flexibility allows the user to
provide interrupt vectors with other programming tools.

The compiler normally generates an interrupt vector entry
using a 3-byte jump instruction (LJMP). Vectors are
located starting at absolute address:

(interval × n) + offset + 3,

where:

n is the interrupt number.

interval is the argument of the INTERVAL
directive (default 8).

offset is the argument of the INTVECTOR
directive (default 0).

See Also: INTERVAL

Keil Software — Cx51 Compiler User’s Guide 45

 2

Example: C51 SAMPLE.C INTVECTOR(0x8000)

#pragma iv(0x8000)

C51 SAMPLE.C NOINTVECTOR

#pragma noiv

46 Chapter 2. Compiling with the Cx51 Compiler

2

LARGE

Abbreviation: LA

Arguments: None.

Default: SMALL

µVision2 Control: Options – Target – Memory Model

Description: This directive selects the LARGE memory model.

In the LARGE memory model, all variables and local data
segments of functions and procedures reside (as defined) in
the external data memory of the 8051 system. Up to
64 KBytes of external data memory may be accessed. This,
however, requires the long and therefore inefficient form of
data access through the data pointer (DPTR).

Regardless of memory model type, you may declare
variables in any of the 8051 memory ranges. However,
placing frequently used variables (such as loop counters and
array indices) in internal data memory significantly
improves system performance.

NOTE
The stack required for function calls is always placed in
IDATA memory.

See Also: SMALL, COMPACT, ROM

Example: C51 SAMPLE.C LARGE

#pragma large

Keil Software — Cx51 Compiler User’s Guide 47

 2

LISTINCLUDE

Abbreviation: LC

Arguments: None.

Default: NOLISTINCLUDE

µVision2 Control: Options – Listing – C Compiler Listing – #include Files

Description: The LISTINCLUDE directive displays the contents of the
include files in the listing file. By default, include files are
not listed in the listing file.

Example: C51 SAMPLE.C LISTINCLUDE

#pragma listinclude

48 Chapter 2. Compiling with the Cx51 Compiler

2

MAXARGS

Abbreviation: None.

Arguments: Number of bytes compiler reserves for variable-length
argument lists.

µVision2 Control: Options – Cx51 – Misc controls: enter the directive.

Default: MAXARGS(15) for small and compact models.

MAXARGS(40) for large model.

Description: With the MAXARGS directive, you specify the buffer size
for parameters passed in variable-length argument lists.
MAXARGS defines the maximum number of parameters.
The MAXARGS directive must be applied before the C
function. This directive has no impact on the maximum
number of arguments that may be passed to reentrant
functions.

Example: C51 SAMPLE.C MAXARGS(20)

 #pragma maxaregs (4) /* allow 4 bytes for parameters */

#include <stdarg.h>

void func (char typ, ...) {
va_list ptr;
char c;
int i;

va_start (ptr, typ);
switch *typ) {
case 0: /* a CHAR is passed */
c = va_arg (ptr, char); break;

case 1: /* an INT is passed */
i = va_arg (ptr, int); break;

}
}

void testfunc (void) {
func (0, 'c'); /* pass a char variable */
func (1, 0x1234); /* pass an int variable */

}

Keil Software — Cx51 Compiler User’s Guide 49

 2

MOD517 / NOMOD517

Abbreviation: None.

Arguments: Optional parameters, enclosed in parentheses, to control
support for individual components of the 80C517.

Default: NOMOD517

µVision2 Control: Options – Target – Use On-Chip Arithmetic Unit
Options – Target – Use multiple DPTR registers

Description: The MOD517 directive instructs the Cx51 compiler to
produce code for the additional hardware components (the
arithmetic processor and the additional data pointers) of the
Infineon C517 or variants. This feature improves the
performance of integer, long, and floating-point math
operations, as well as functions that make use of the
additional data pointers.

The following library functions take advantage of the extra
data pointers: memcpy, memmove, memcmp, strcpy, and
strcmp.

Library functions that take advantage of the arithmetic
processor have a 517 suffix. (Refer to “Chapter 8. Library
Reference” on page 209 for details on these functions.)

Additional parameters may be specified with MOD517 to
control Cx51 support of the individual components of the
Infineon device. When specified, the parameters must
appear within parentheses immediately following the
MOD517 directive. Parentheses are not required if none of
these additional parameters is specified.

50 Chapter 2. Compiling with the Cx51 Compiler

2

Directive Description

NOAU When specified, the Cx51 Compiler uses only the
additional data pointers of the Infineon device. The
arithmetic processor is not used. The NOAU parameter is
useful for functions that are called by an interrupt while the
arithmetic processor is already being used.

NODP8 When specified, the Cx51 Compiler uses only the
arithmetic processor. The additional data pointers are not
used. The NODP8 parameter is useful for interrupt
functions declared without the using function attribute. In
this case, the extra data pointers are not used and,
therefore, do not need to be saved on the stack during the
interrupt.

Specifying both of these additional parameters with
MOD517 has the same effect as using the NOMOD517
directive.

The NOMOD517 directive disables generation of code that
utilizes the additional hardware components of the C517 or
variants.

NOTE
Though it may be defined several times in a program, the
MOD517 directive is valid only when defined outside of a
function declaration.

See Also: MODA2, MODAD2, MODDA, MODDP2, MODP2

Example: C51 SAMPL517.C MOD517

#pragma MOD517 (NOAU)

#pragma MOD517 (NODP8)

#pragma MOD517 (NODP8, NOAU)

C51 SAMPL517.C NOMOD517

#pragma NOMOD517

Keil Software — Cx51 Compiler User’s Guide 51

 2

MODA2 / NOMODA2

Abbreviation: None.

Arguments: None.

Default: NOMODA2

µVision2 Control: Options – Target – Use multiple DPTR registers

Description: The MODA2 directive instructs the Cx51 compiler to
produce code for the additional hardware components
(specifically, the additional CPU data pointers) available in
the Atmel 80x8252 or variants and compatible derivatives.
Using additional data pointers can improve the performance
of the following library functions: memcpy, memmove,
memcmp, strcpy, and strcmp.

The NOMODA2 directive disables generation of code that
utilizes the additional CPU data pointers.

See Also: MOD517, MODAB2, MODDP2, MODP2

Example: C51 SAMPLE.C MODA2

#pragma moda2

C51 SAMPLE.C NOMODA2

#pragma nomoda2

52 Chapter 2. Compiling with the Cx51 Compiler

2

MODAB2 / NOMODAB2

Abbreviation: None.

Arguments: None.

Default: NOMODAB2

µVision2 Control: Options – Target – Use multiple DPTR registers

Description: The MODAB2 directive instructs the Cx51 compiler to
produce code for the additional hardware components
(specifically, the additional CPU data pointers) available in
the Analog Devices B2 series of MicroConverters. Using
additional data pointers can improve the performance of the
following library functions: memcpy, memmove,
memcmp, strcpy, and strcmp.

The NOMODAB2 directive disables generation of code that
utilizes the additional CPU data pointers.

See Also: MOD517, MODA2, MODDP2, MODP2

Example: C51 SAMPLE.C MODAB2

#pragma moda2

C51 SAMPLE.C NOMODAB2

#pragma nomoda2

Keil Software — Cx51 Compiler User’s Guide 53

 2

MODDA2 / NOMODDA2

Abbreviation: None.

Arguments: None.

Default: NOMODDA2

µVision2 Control: Options – Target – Use On-Chip Arithmetic Accelerator

Description: The MODDA2 directive instructs the Cx51 compiler to
produce code for the additional hardware components (the
arithmetic accelerator) of the Dallas Semiconductur
DS80C390, DS80C400 and DS5240. This feature improves
the performance of integer, and long operations.

The NOMODDA directive disables generation of code that
utilizes the on-chip Arithemetic Accelerator.

Use the following suggestions to help guarantee that only
one thread of execution uses the arithmetic processor:

� Use the MODDA directive to compile functions which
are guaranteed to execute only in the main program or
functions used by one interrupt service routine, but not
both.

� Compile all remaining functions with the NOMODDA
directive.

See Also: MOD517

Example: C51 SAMPL390.C MODDA

#pragma modda

C51 SAMPL390.C NOMODDA

#pragma nomodda

54 Chapter 2. Compiling with the Cx51 Compiler

2

MODDP2 / NOMODDP2

Abbreviation: None.

Arguments: None.

Default: NOMODDP2

µVision2 Control: Options – Target – Use multiple DPTR registers

Description: The MODDP2 directive instructs the Cx51 compiler to
produce code for the additional hardware components
(specifically, the additional CPU data pointers) available in
the Dallas 80C320, C520, C530, C550, or variants and
compatible derivatives. Using additional data pointers can
improve the performance of the following library functions:
memcpy, memmove, memcmp, strcpy, and strcmp.

The NOMODDP2 directive disables generation of code that
utilizes the additional CPU data pointers.

See Also: MOD517, MODA2, MODP2

Example: C51 SAMPL320.C MODDP2

#pragma moddp2

C51 SAMPL320.C NOMODDP2

#pragma nomoddp2

Keil Software — Cx51 Compiler User’s Guide 55

 2

MODP2 / NOMODP2

Abbreviation: None.

Arguments: None.

Default: NOMODP2

µVision2 Control: Options – Target – Use multiple DPTR registers

Description: The MODP2 directive instructs the Cx51 compiler to use
the additional DPTR registers (dual data pointers) that are
available in some 8051 variants from Philips or AtmelWM.
Using additional data pointers can improve the performance
of the following library functions: memcpy, memmove,
memcmp, strcpy, and strcmp.

The NOMODP2 directive disables generation of code that
utilizes the dual DPTR registers.

See Also: MOD517, MODA2, MODAB2, MODDP2

Example: C51 SAMPLE.C MODP2

#pragma modp2

C51 SAMPLE.C NOMODP2

#pragma nomodp2

56 Chapter 2. Compiling with the Cx51 Compiler

2

NOAMAKE

Abbreviation: NOAM

Arguments: None.

Default: AutoMAKE information is generated.

µVision2 Control: This directive may not be used with µVision2.

Description: NOAMAKE disables the AutoMAKE project information
records produced by the Cx51 compiler. It also disables the
register optimization information.

Use NOAMAKE to generate object files that can be used
with older versions of the 8051 development tool chain.

Example: C51 SAMPLE.C NOAMAKE

#pragma NOAM

Keil Software — Cx51 Compiler User’s Guide 57

 2

NOEXTEND

Abbreviation: None.

Arguments: None.

Default: All language extensions are enabled.

µVision2 Control: Enter NOEXTEND at Options – C51 – Misc Controls

Description: The NOEXTEND control directs the compiler to process
only ANSI C language constructs. The Cx51 language
extensions are disabled. Reserved keywords such as bit,
reentrant and using are not recognized and generate
compilation errors or warnings.

Example: C51 SAMPLE.C NOEXTEND

#pragma NOEXTEND

58 Chapter 2. Compiling with the Cx51 Compiler

2

OBJECT / NOOBJECT

Abbreviation: OJ / NOOJ

Arguments: An optional filename enclosed in parentheses.

Default: OBJECT (filename.OBJ)

µVision2 Control: Options – Output – Select Folder for Objects

Description: The OBJECT(filename) directive changes the name of the
object file to the file name provided. By default, the object
files are created using the source file name and the.OBJ
extension.

The NOOBJECT control prevents an object file from being
created.

Example: C51 SAMPLE.C OBJECT(sample1.obj)

#pragma oj(sample_1.obj)

C51 SAMPLE.C NOOBJECT

#pragma nooj

Keil Software — Cx51 Compiler User’s Guide 59

 2

OBJECTADVANCE

Abbreviation: OA

Arguments: None.

Default: None.

µVision2 Control: Options – C51 – Code Optimization – Linker Code Packing

Description: The OBJECTADVANCED directive instructs the compiler
to include information in the object file for for linker-level
program optimizations. This directive is used in conjunction
with the OPTIMIZE directive to shrink program size and
decrease execution speed.

When enabled, the OBJECTADVANCED directive
instructs the LX51 linker/locater to perform the following
optimizations:

OPTIMIZE
Level

Linker Optimizations Performed

0 – 7 Maximize AJMP / ACALL: The linker rearranges code
segments to maximize AJMP and ACALL instructions
which are shorter than LJMP and LCALL instructions.

8 Reuse of Common Entry Code: Setup code may be
reused when multiple calls are made to a single function.
Reusing common entry code reduces program size. This
optimization is performed on the complete application.

9 Common Block Subroutines: Recurring instruction
sequences are converted into subroutines. This reduces
program size but slightly increases execution speed. This
optimization is performed on the complete application.

10 Rearrange Code: When detecting common block
subroutines, code is rearranged to obtain larger recurring
sequences.

11 Reuse of Common Exit Code: Indentical exit sequences
are reused. This may reduce the size of common block
subroutines even further. This optimization level
generates the most compact program code possible.

See Also: OPTIMIZE, OMF2

Example: C51 SAMPLE.C OBJECTADVANCED DEBUG

60 Chapter 2. Compiling with the Cx51 Compiler

2

OBJECTEXTEND

Abbreviation: OE

Arguments: None.

Default: None.

µVision2 Control: Options – Output – Debug Information

Description: The OBJECTEXTEND directive instructs the compiler to
include additional variable-type, definition information in
the generated object file. This additional information is
used to identify objects within different scopes that have the
same names so that they may be correctly differentiated by
various emulators and simulators.

NOTE
Object files generated using this directive contain a superset
of the OMF-51 specification for relocatable object formats.
Emulators or simulators must provide enhanced object
loaders to use this feature. If in doubt, do not use
OBJECTEXTEND.

See Also: DEBUG, OMF2

Example: C51 SAMPLE.C OBJECTEXTEND DEBUG

#pragma oe db

Keil Software — Cx51 Compiler User’s Guide 61

 2

ONEREGBANK

Abbreviation: OB

Arguments: None

Default: None

µVision2 Control: Enter ONEREGBANK at Options – C51 – Misc controls

Description: Cx51 selects registerbank 0 on entry to interrupts that do not
specify the using attribute. This is done at the beginning of
the interrupt service routine with the MOV PSW,#0
instruction. This ensures that high-priority interrupts that do
not use the using attribute can interrupt lower priority
interrupts that use a different registerbank.

If your application uses only one registerbank for interrupts,
you may use the ONEREGBANK directive. This elimitates
the MOV PSW,#0 instruction.

Example: C51 SAMPLE.C ONEREGBANK

#pragma OB

62 Chapter 2. Compiling with the Cx51 Compiler

2

OMF2

Abbreviation: O2

Arguments: None

Default: The C51 compiler generates by default the Intel OMF51 file
format. The OMF2 file format is default for the Cx51
compiler.

µVision2 Control: Project – Select Device – Use LX51 instead of BL51.

Description: The OMF2 directive enables the OMF2 file format which
provides detailed symbol type checking across modules and
eliminates the historic limitations of the Intel OMF51 file
format.

The OMF2 file format is required when you want to use one
of the following features of the Cx51 compiler:

� Variable Banking: The VARBANKING directive
enables use of the far memory type.

� XDATA ROM: Using the const xdata memory type
specifies that XDATA variables are located in ROM.

� RAM Strings: The STRING directive specifies that
string constants are located in xdata or far space.

� Contiguous Mode: The ROM (D512K) and
ROM (D16M) directives enable the contiguous mode of
the Dallas Semiconductor 390 and variants.

 The OMF2 file format requires the extended LX51
linker/locater and cannot be used with the BL51
linker/locater.

See Also: OBJECTEXTEND

Example: C51 SAMPLE.C OMF2

#pragma O2

Keil Software — Cx51 Compiler User’s Guide 63

 2

OPTIMIZE

Abbreviation: OT

Arguments: A decimal number between 0 and 9 enclosed in parentheses.
In addition, OPTIMIZE (SIZE) or OPTIMIZE (SPEED)
may be used to select whether the optimization emphasis
should be placed on code size or on execution speed.

Default: OPTIMIZE (8, SPEED)

µVision2 Control: Options – C51 – Code Optimization

Description: The OPTIMIZE directive sets the optimization level and
emphasis.

NOTE
Each higher optimization level contains all of the
characteristics of the preceding lower optimization level.

Level Description

0 Constant Folding: The compiler performs calculations that
reduce expressions to numeric constants, where possible.
This includes calculations of run-time addresses.

Simple Access Optimizing: The compiler optimizes access
of internal data and bit addresses in the 8051 system.

Jump Optimizing: The compiler always extends jumps to the
final target. Jumps to jumps are deleted.

1 Dead Code Elimination: Unused code fragments and
artifacts are eliminated.

Jump Negation: Conditional jumps are closely examined to
see if they can be streamlined or eliminated by the inversion of
the test logic.

2 Data Overlaying: Data and bit segments suitable for static
overlay are identified and internally marked. The BL51
Linker/Locator has the capability, through global data flow
analysis, of selecting segments which can then be overlaid.

3 Peephole Optimizing: Redundant MOV instructions are
removed. This includes unnecessary loading of objects from
the memory as well as load operations with constants.
Complex operations are replaced by simple operations when
memory space or execution time can be saved.

64 Chapter 2. Compiling with the Cx51 Compiler

2

Level Description

4 Register Variables: Automatic variables and function
arguments are located in registers when possible.
Reservation of data memory for these variables is omitted.

Extended Access Optimizing: Variables from the IDATA,
XDATA, PDATA and CODE areas are directly included in
operations. The use of intermediate registers is not necessary
most of the time.

Local Common Subexpression Elimination: If the same
calculations are performed repetitively in an expression, the
result of the first calculation is saved and used further
whenever possible. Superfluous calculations are eliminated
from the code.

Case/Switch Optimizing: Code involving switch and case
statements is optimized as jump tables or jump strings.

5 Global Common Subexpression Elimination: Identical sub
expressions within a function are calculated only once when
possible. The intermediate result is stored in a register and
used instead of a new calculation.

Simple Loop Optimizing: Program loops that fill a memory
range with a constant are converted and optimized.

6 Loop Rotation: Program loops are rotated if the resulting
program code is faster and more efficient.

7 Extended Index Access Optimizing: Uses the DPTR for
register variables where appropriate. Pointer and array
access are optimized for both execution speed and code size.

8 Common Tail Merging: When there are multiple calls to a
single function, some of the setup code can be reused,
thereby reducing program size.

9 Common Block Subroutines: Detects recurring instruction
sequences and converts them into subroutines. Cx51 even
rearranges code to obtain larger recurring sequences.

 OPTIMIZE level 9 includes all optimizations of levels
0 to 8.

Example: C51 SAMPLE.C OPTIMIZE (9)

C51 SAMPLE.C OPTIMIZE (0)

#pragma ot(6, SIZE)

#pragma ot(size)

Keil Software — Cx51 Compiler User’s Guide 65

 2

ORDER

Abbreviation: OR

Arguments: None.

Default: The variables are not ordered.

µVision2 Control: Options – C51 – Keep Variables in Order

Description: The ORDER directive instructs the Cx51 compiler to order
all variables in memory according to their order of definition
in the C source file. ORDER disables the hash algorithm
used by the C compiler. This directive causes the Cx51 to
compiler more slowly.

Example: C51 SAMPLE.C ORDER

#pragma OR

66 Chapter 2. Compiling with the Cx51 Compiler

2

PAGELENGTH

Abbreviation: PL

Arguments: A decimal number up to 65535 enclosed in parentheses.

Default: PAGELENGTH (60)

µVision2 Control: Options – Listing – Page Length

Description: The PAGELENGTH directive specifies the number of lines
printed per page in the listing file. The default is 60 lines
per page, including headers and empty lines.

See Also: PAGEWIDTH

Example: C51 SAMPLE.C PAGELENGTH (70)

#pragma pl (70)

Keil Software — Cx51 Compiler User’s Guide 67

 2

PAGEWIDTH

Abbreviation: PW

Arguments: A decimal number in range 78 to 132 enclosed in
parentheses.

Default: PAGEWIDTH (132)

µVision2 Control: Options – Listing – Page Width

Description: The PAGEWIDTH directive specifies the number of
characters per line that may be printed to the listing file.
Lines with more than the specified number of characters are
broken into two or more lines.

See Also: PAGELENGTH

Example: C51 SAMPLE.C PAGEWIDTH(79)

#pragma pw(79)

68 Chapter 2. Compiling with the Cx51 Compiler

2

PREPRINT

Abbreviation: PP

Arguments: An optional filename enclosed in parentheses.

Default: No preprocessor listing is generated.

µVision2 Control: Options – C51 – C Preprocessor Listing

Description: The PREPRINT directive instructs the compiler to produce
a preprocessor listing. Macro calls are expanded and
comments are deleted. If PREPRINT is used without an
argument, the source filename with the extension .I is used.
By default, the Cx51 compiler does not generate a
preprocessor output file.

NOTE
The PREPRINT directive may be specified only on the
command line. It may not be specified in the C source file
using the #pragma directive.

Example: C51 SAMPLE.C PREPRINT

C51 SAMPLE.C PP (PREPRO.LSI)

Keil Software — Cx51 Compiler User’s Guide 69

 2

PRINT / NOPRINT

Abbreviation: PR / NOPR

Arguments: An optional filename enclosed in parentheses.

Default: PRINT (filename.LST)

µVision2 Control: Options – Listing – Select Folder for List Files

Description: The compiler produces a listing of each compiled program
using the extension .LST. Using the PRINT directive, you
may redefine the name of the listing file.

The NOPRINT directive prevents the compiler from
generating a listing file.

Example: C51 SAMPLE.C PRINT(CON:)

#pragma pr (\usr\list\sample.lst)

C51 SAMPLE.C NOPRINT

#pragma nopr

70 Chapter 2. Compiling with the Cx51 Compiler

2

REGFILE

Abbreviation: RF

Arguments: A file name enclosed in parentheses.

Default: None.

µVision2 Control: Options – C51 – Global Register Coloring

Description: The REGFILE directive instructs the Cx51 compiler to use
a register definition file for global register optimization.
The register definition file specifies the register usage of
external functions. Using this information, the Cx51
compiler can optimize the use of the general purpose
registers. This feature enables global program-wide register
optimization.

Example: C51 SAMPLE.C REGFILE(sample.reg)

#pragma REGFILE(sample.reg)

Keil Software — Cx51 Compiler User’s Guide 71

 2

REGISTERBANK

Abbreviation: RB

Arguments: A number in range 0-3 enclosed in parentheses.

Default: REGISTERBANK (0)

µVision2 Control: Enter the REGISTERBANK directive at Options – C51 –
Misc controls.

Description: The REGISTERBANK directive selects which register
bank to use for subsequent functions declared in the source
file. Resulting code may use the absolute form of register
access when the absolute register number can be computed.
The using function attribute supersedes the effects of the
REGISTERBANK directive.

NOTE
Unlike the using function attribute, the REGISTERBANK
control does not switch the register bank.

Functions that return a value to the caller must always use
the same register bank as the caller. If the register banks
are not the same, return values may be returned in registers
of the wrong register bank.

The REGISTERBANK directive may appear more than
once in a source program; however, the directive is ignored
if used within a function declaration.

Example: C51 SAMPLE.C REGISTERBANK(1)

#pragma rb(3)

72 Chapter 2. Compiling with the Cx51 Compiler

2

REGPARMS / NOREGPARMS

Abbreviation: None.

Arguments: None.

Default: REGPARMS

µVision2 Control: Enter the REGPARMS directive at Options – C51 – Misc
controls.

Description: The REGPARMS directive directs the compiler to generate
code that passes up to three function arguments in registers.
This type of parameter passing is similar to what you would
use when writing in assembly and is significantly faster than
storing function arguments in memory. Parameters that
cannot be located in registers are passed using fixed memory
areas.

The NOREGPARMS directive forces all function
arguments to be passed in fixed memory areas. This
directive generates parameter passing code which is
compatible with C51, Version 2 and Version 1.

NOTE
You may specify both the REGPARMS and
NOREGPARMS directive several times within a source
program. This allows you to create some program sections
with register parameters and other sections using the old
style of parameter passing.

Use NOREGPARMS to access older assembler functions or
library files without having to reassemble or recompile
them. This is illustrated in the following example program.

Keil Software — Cx51 Compiler User’s Guide 73

 2

#pragma NOREGPARMS /* Parm passing-old method */
extern int old_func (int, char);

#pragma REGPARMS /* Parm passing-new method */
extern int new_func (int, char);

main () {
char a;
int x1, x2;
x1 = old_func (x2, a);
x1 = new_func (x2, a);

}

Example: C51 SAMPLE.C NOREGPARMS

74 Chapter 2. Compiling with the Cx51 Compiler

2

RET_PSTK, RET_XSTK

Abbreviation: RP, RX

Arguments: None.

Default: None.

µVision2 Control: Enter the RET_PSTK, RET_XSTK directive at
Options – C51 – Misc controls.

Description: The RET_PSTK, and RET_XSTK directives cause the
pdata or xdata reentrant stacks to be used for return
addresses. Normally, return addresses are stored on the
8051’s hardware stack. These directives instruct the
compiler to generate code that pops the return address from
the hardware stack and stores it on the reentrant stack
specified.

 RET_PSTK Uses the compact model reentrant stack.
 RET_XSTK Uses the large model reentrant stack.

NOTE
You may use the RET_xSTK directives to unload return
addresses from the on-chip or hardware stack. These
directives may be selectively used on the modules that
contain the deepest stack nesting.

If you use one of these directives you must initialize the
reentrant stack pointer defined in the startup code. Refer to
“STARTUP.A51”on page 151 for more information on how
to initilize the reentrant stacks.

Keil Software — Cx51 Compiler User’s Guide 75

 2

1 #pragma RET_XSTK
2 extern void func2 (void);
3
4 void func (void) {
5 1 func2 ();
6 1 }

ASSEMBLY LISTING OF GENERATED OBJECT CODE
; FUNCTION func (BEGIN)

0000 120000 E LCALL ?C?CALL_XBP
; SOURCE LINE # 5

0003 120000 E LCALL func2
; SOURCE LINE # 6

0006 020000 E LJMP ?C?RET_XBP
; FUNCTION func (END)

Example: C51 SAMPLE.C RET_XSTK

76 Chapter 2. Compiling with the Cx51 Compiler

2

ROM

Abbreviation: None.

Arguments: (SMALL), (COMPACT), (LARGE), (D512K), or (D16M)

Default: ROM (LARGE)

µVision2 Control: Options – Target – Code Rom Size

Description: You use the ROM directive to specify the size of the
program memory. This directive affects the coding of the
JMP and CALL instructions.

Option Description

SMALL CALL and JMP instructions are coded as ACALL and
AJMP. The maximum program size may be 2 KBytes. The
entire program must be allocated within the 2 KByte
program memory space.

COMPACT CALL instructions are coded as LCALL. JMP instructions
are coded as AJMP within a function. The size of a
function must not exceed 2 KBytes. The entire program
may, however, comprise a maximum of 64 KBytes. The
type of application determines whether or not
ROM (COMPACT) is more advantageous than
ROM (LARGE). Any code space saving advantages in
using ROM (COMPACT) must be empirically determined.

LARGE CALL and JMP instructions are coded as LCALL and
LJMP. This allows you to use the entire address space
without any restrictions. Program size is limited to
64 KBytes. Function size is also limited to 64 KBytes.

D512K†
(Dallas 390
& variants)

19-bit ACALL and AJMP instructions are generated. The
maximum program size may be 512 KBytes. This mode is
available only for the Dallas 390 and compatible devices.

D16M†
(Dallas 390
& variants)

24-bit LCALL instructions and 19-bit AJMP instructions are
generated. The maximum program size may be 16MBytes.
This mode is available only for the Dallas 390 and
compatible devices.

† The D512K and D16M options require the OMF2 directive.

See Also: SMALL, COMPACT, LARGE

Example: C51 SAMPLE.C ROM (SMALL)

#pragma ROM (SMALL)

Keil Software — Cx51 Compiler User’s Guide 77

 2

SAVE / RESTORE

Abbreviation: None.

Arguments: None.

Default: None.

µVision2 Control: This directive cannot be specified on the command line.

Description: The SAVE directive stores the current settings of AREGS,
REGPARMS and the current OPTIMIZE level and
emphasis. These settings are saved, for example, before an
#include directive and restored afterwards using
RESTORE.

The RESTORE directive retrieves the values of the last
SAVE directive from the save stack.

The maximum nesting depth for SAVE directives is eight
levels.

NOTE
SAVE and RESTORE may be specified only as an argument
of a #pragma statement. You may not specify this control
option in the command line.

Example: #pragma save
#pragma noregparms

extern void test1 (char c, int i);
extern char test2 (long l, float f);

#pragma restore

 In the above example, parameter passing in registers is
disabled for the two external functions, test1 and test2.
The settings at the time of the SAVE directive are restored
by the RESTORE directive.

78 Chapter 2. Compiling with the Cx51 Compiler

2

SMALL

Abbreviation: SM

Arguments: None.

Default: SMALL

µVision2 Control: Options – Target – Memory Model

Description: This directive selects the SMALL memory model that
places all function variables and local data segments in the
internal data memory of the 8051 system. This allows very
efficient access to data objects. The address space of the
SMALL memory model, however, is limited.

Regardless of memory model type, you may declare
variables in any of the 8051 memory ranges. However,
placing frequently used directives (such as loop counters and
array indices) in internal data memory significantly
improves system performance.

NOTE
The stack required for function calls is always placed in
IDATA memory.

Always start by using the SMALL memory model. Then, as
your application grows, you can place large variables and
data in other memory areas by explicitly declaring the
memory area with the variable declaration.

See Also: COMPACT, LARGE, ROM

Example: C51 SAMPLE.C SMALL

#pragma small

Keil Software — Cx51 Compiler User’s Guide 79

 2

SRC

Abbreviation: None.

Arguments: An optional filename in parentheses.

Default: None.

µVision2 Control: Can be set under µVision2 as follows:

� Right click on the file in the Project Window – Files tab
� Choose Options for… to open Options – Properties

page
� Enable Generate Assembler SRC file

Description: Use the SRC directive to create an assembler source file
instead of an object file. This source file may be assembled
with the A51 assembler.

If a filename is not specified in parentheses, the base name
and path of the C source file are used with the .SRC
extension.

NOTE
The compiler cannot simultaneously produce a source file
and an object file.

See Also: ASM, ENDASM

Example: C51 SAMPLE.C SRC

C51 SAMPLE.C SRC(SML.A51)

80 Chapter 2. Compiling with the Cx51 Compiler

2

STRING

Abbreviation: ST

Arguments: (CODE), (XDATA), or (FAR)

Default: STRING (CODE)

µVision2 Control: Enter the directive STRING at
Options – C51 – Misc controls.

Description: The STRING directive allows you to specify the memory
type used for implicit strings. By default, strings are
implicitly located in code memory. For example, “hello
world” is located in code memory in the following:

void main (void) {
printf ("hello world\n");

}

By using the STRING directive you can change the location
of such strings. This option must be used carefully, since
existing programs might use memory typed pointers to
access strings. By allocating strings into the xdata or far
memory space, you may avoid the use of code banking in
your application. This option is useful especially for
extended 8051 devices like the Philips 80C51MX.

Option Description

CODE Implicit strings are located in code space. This is the
default setting of the Cx51 compiler.

XDATA† Implicit strings are located in const xdata space.
FAR† Implicit strings are located in const far space.

† The option XDATA and FAR require the OMF2 directive.

See Also: OMF2, XCROM

Example: C51 SAMPLE.C STRING (XDATA)

#pragma STRING (FAR)

Keil Software — Cx51 Compiler User’s Guide 81

 2

SYMBOLS

Abbreviation: SB

Arguments: None.

Default: No list of symbols is generated.

µVision2 Control: Options – Listing – C Compiler Listing - Symbols

Description: The SYMBOLS control directs the compiler to generate a
list of all symbols used in and by the program module being
compiled. This list is included in the listing file. The
memory category, memory type, offset, and size are listed
for each symbolic object.

Example: C51 SAMPLE.C SYMBOLS

#pragma SYMBOLS

 The following listing file excerpt shows the symbol listing:

 NAME CLASS MSPACE TYPE OFFSET SIZE
==== ===== ====== ==== ====== ====
EA ABSBIT ----- BIT 00AFH 1
update PUBLIC CODE PROC ----- -----
dtime. PARAM DATA PTR 0000H 3

setime PUBLIC CODE PROC ----- -----
mode PARAM DATA PTR 0000H 3
dtime. PARAM DATA PTR 0003H 3
setuptime. . . . AUTO DATA STRUCT 0006H 3

time * TAG * ----- STRUCT ----- 3
hour MEMBER DATA U_CHAR 0000H 1
min. MEMBER DATA U_CHAR 0001H 1
sec. MEMBER DATA U_CHAR 0002H 1

SBUF SFR DATA U_CHAR 0099H 1
ring PUBLIC DATA BIT 0001H 1
SCON SFR DATA U_CHAR 0098H 1
TMOD SFR DATA U_CHAR 0089H 1
TCON SFR DATA U_CHAR 0088H 1
mnu. PUBLIC CODE ARRAY 00FDH 119

82 Chapter 2. Compiling with the Cx51 Compiler

2

USERCLASS

Abbreviation: UCL

Arguments: (mspace = user_classname)

mspace refers to the default memory space used for
variables or program code and is explained below:

mspace Description

CODE Program code.

CONST Variables in code space (CONST class).
XCONST Constants in const xdata space (XDATA class).
XDATA Variables in xdata space (XDATA class).
HDATA Variables in extended far space (HDATA class).

HCONST Constants in extended const far space (HCONST class).

user_classname is the name for a memory class. You can
supply any valid identifier for a class name.

Default: Segments receive the default class name.

µVision2 Control: Enter the directive USERCLASS at Options – C51 – Misc
controls.

Description: The USERCLASS directive assigns a user defined class
name for a compiler generated segment. By default, the
Cx51 compiler uses the basic class name for segment
definitions. The user class name may be referenced at the
extended LX51 linker/locater level to locate all segments
with a class name, such as HDATA_FLASH, to a specific
memory section. The USERCLASS directive renames the
basic class name for a complete module, but not overlayable
segments.

 Memory classes are only available when you use the OMF2
format and the extended LX51 linker/locater.

Keil Software — Cx51 Compiler User’s Guide 83

 2

Example: C51 UCL.C

#pragma userclass (xdata = flash)
#pragma userclass (hconst = patch)

int xdata x1 [10]; // XDATA_FLASH
const char far tst[] = “Hello”; // HCONST_PATCH

84 Chapter 2. Compiling with the Cx51 Compiler

2

VARBANKING

Abbreviation: VB

Arguments: None No modification of the interrupt code.
(1) Save address extension SFR in interrupt code.

Default: The standard C51 library is used.

µVision2 Control: Options – Target – ‘far’ memory type support.
Options – Target – save address extension SFR in interrupts.

Description: The VARBANKING directive allows you to use far
memory on classic 8051 devices. When enabled, a different
set of library functions that support far memory are selected.

The access functions for far variables are configured in
XBANKING.A51. Refer to “XBANKING.A51” on page
154 for more information.

 VARBANKING (1) adds save and restore code for the
address extension SFR to interrupt functions. The symbol
?C?XPAGE1SFR defined in XBANKING.A51 specifies
the address of the address extension SFR. The initial value
of this SFR is specified with the symbol ?C?XPAGE1RST.
At the beginning of the interrupt function the instruction
MOV ?C?XPAGE1SFR,?C?XPAGE1RST is inserted.

NOTE
Only interrupt functions in C modules that are translated
with the VARBANKING (1) directive save and restore the
address extension SFR. If your application contains other
interrupt functions in assembly modules or libraries, you
must check these functions carefully.

 The examples in \KEIL\C51\EXAMPLES\FARMEMORY\ show
how to use the C51 far memory type on classic 8051
devices.

Example: C51 SAMPLE.C VARBANKING

C51 MYFILE.C VARBANKING (1)

Keil Software — Cx51 Compiler User’s Guide 85

 2

WARNINGLEVEL

Abbreviation: WL

Arguments: A number from 0-2.

Default: WARNINGLEVEL (2)

µVision2 Control: Options – C51 – Warnings

Description: The WARNINGLEVEL directive allows you to suppress
compiler warnings. Refer to “Chapter 7. Error Messages”
on page 189 for a full list of the compiler warnings.

Warning Level Description

0 Disables most compiler warnings.

1 Lists only those warnings which may generate
incorrect code.

2 (Default) Lists all WARNING messages including
warnings about unused variables, expressions,
or labels.

Example: C51 SAMPLE.C WL (1)

#pragma WARNINGLEVEL (0)

86 Chapter 2. Compiling with the Cx51 Compiler

2

XCROM

Abbreviation: XC

Arguments: None.

Default: All xdata variables are initialized during the execution of the
startup code.

µVision2 Control: Enter the directive XCROM at Options – C51 – Misc
controls.

Description: The XCROM directive directs the compiler to store
constant variables in xdata memory rather than code
memory. These variables must be declared using const
xdata. This frees up code memory for your application
program.

Some new 8051 devices provide a memory management unit
which allows you to map ROM space into the xdata memory
area. For classic 8051 devices you may use a ROM device
instead of RAM for the xdata space.

See Also: OMF2, STRING

Example: #pragma XCROM // Enable const xdata ROM

/*
* The following text will be in a ROM that
* is addressed in the XDATA space.
*/

const char xdata text [] = "Hello World\n";

void main (void) {
printf (text);

}

Keil Software — Cx51 Compiler User’s Guide 87

 2

Keil Software — Cx51 Compiler User’s Guide 89

 3

Chapter 3. Language Extensions
The Cx51 compiler provides several extensions to ANSI Standard C to support
the elements of the 8051 architecture. These include extensions for:

� Memory Areas

� Memory Types

� Memory Models

� Memory Type Specifiers

� Variable Data Type Specifiers

� Bit Variables and Bit-addressable Data

� Special Function Registers

� Pointers

� Function Attributes

The following sections describe each of these in detail.

Keywords
To facilitate many of the features of the 8051, the Cx51 compiler adds a number
of new keywords to the scope of the C language:

at
alien
bdata
bit
code
compact
data

far
idata
interrupt
large
pdata
priority
reentrant

sbit
sfr
sfr16
small
task
using
xdata

You may disable these extensions using the NOEXTEND control directive.
Refer to “Chapter 2. Compiling with the Cx51” on page 17 for more
information.

90 Chapter 3. Language Extensions

3

Memory Areas
The 8051 architecture supports several physically separate memory areas or
memory spaces for program and data. Each memory area offers certain
advantages and disadvantages. There are memory spaces that may be:

� read from but not written to.

� read from or written to.

� read from or written to more quickly than other memory spaces.

This wide variety of memory space is quite different from most mainframe,
minicomputer, and microcomputer architectures where the program, data, and
constants are all loaded into the same physical memory space within the
computer. Refer to the Intel 8-Bit Embedded Controllers handbook or other
8051 data books for more information about the 8051 memory architecture.

Program Memory
Program (CODE) memory is read only; it cannot be written to. Program memory
may reside within the 8051 CPU, it may be external, or it may be both,
depending upon the 8051 derivative and the hardware design.

There may be up to 64 KBytes of program memory. Program code, including all
functions and library routines, is stored in program memory. Constant variables
may also be stored in program memory. The 8051 executes programs stored in
program memory only.

Program memory may be accessed using the code memory type specifier in the
Cx51 compiler.

Keil Software — Cx51 Compiler User’s Guide 91

 3

Internal Data Memory
Internal data memory resides within the 8051 CPU and is read/write. Up to 256
bytes of internal data memory are available depending upon the 8051 derivative.
The first 128 bytes of internal data memory are both directly and indirectly
addressable. The upper 128 bytes of data memory (from 0x80 to 0xFF) can be
addressed only indirectly. There is also a 16 byte area starting at 20h that is
bit-addressable.

Access to internal data memory is very fast because it can be accessed using an
8-bit address. However, internal data memory is limited to a maximum of 256
bytes.

Internal data can be broken down into three distinct memory types: data, idata,
and bdata.

The data memory specifier always refers to the first 128 bytes of internal data
memory. Variables stored here are accessed using direct addressing.

The idata memory specifier refers to all 256 bytes of internal data memory;
however, this memory type specifier code is generated by indirect addressing
which is slower than direct addressing.

The bdata memory specifier refers to the 16 bytes of bit-addressable memory in
the internal data area (20h to 2Fh). This memory type specifier allows you to
declare data types that can also be accessed at the bit level.

92 Chapter 3. Language Extensions

3

External Data Memory
External data memory is read/write. Access to external data is slower than
access to internal data memory because the external data memory is indirectly
accessed through a data pointer register which must be loaded with an address.

Several 8051 devices provide on-chip XRAM space that is accessed with the
same instructions as the traditional external data space. This XRAM space is
typically enabled via dedicated chip configuration SFR registers and overlaps the
external memory space.

There may be up to 64 KBytes of external data memory; though, this address
space does not necessarily have to be used as memory. Your hardware design
may map peripheral devices into the memory space. If this is the case, your
program would access external data memory to program and control the
peripheral. This technique is referred to as memory-mapped I/O.

The Cx51 Compiler offers two different memory types that access external data:
xdata and pdata.

The xdata memory specifier refers to any location in the 64 KByte address space
of external data memory.

The pdata memory type specifier refers to only one (1) page or 256 bytes of
external data memory. See “Compact Model” on page 95 for more information
on pdata.

Keil Software — Cx51 Compiler User’s Guide 93

 3

Far Memory
Far memory refers to the extended addess space of many new 8051 variants.
The Cx51 Compiler uses generic 3-byte pointers to access extended memory
spaces. Two Cx51 memory types, far and const far, access variables in
extended RAM space and constants in extended ROM space.

The Philips 51MX Architecture provides hardware support for 8MB code and
xdata space using universal pointers. The new instructions of the 80C51MX
architecture are used by the Cx51 compiler to access far and const far variables.

The Dallas 390 Architecture supports an extended code and xdata address
space in contigious mode with a 24-bit DPTR register and the traditional MOVX
and MOVC instructions. Variables defined with far and const far are located in
these extended xdata and code address spaces.

Classic 8051 devices may also use far and const far variables if you configure
XBANKING.A51 for your target hardware. This is useful for devices that
provide an address extension SFR or additional memory spaces that can be
mapped into the xdata space. You may also use xdata banking hardware to
extend the address space of a classic 8051 device. Refer to “XBANKING.A51”
on page 154 for more information.

NOTE
You need to specify the C51 directive OMF2 and the extended LX51
linker/locater to use the far and far const memory types.

Special Function Register Memory
The 8051 provides 128 bytes of memory for Special Function Registers (SFRs).
SFRs are bit, byte, or word-sized registers that are used to control timers,
counters, serial I/O, port I/O, and peripherals. Refer to “Special Function
Registers” on page 101 for more information on SFRs.

94 Chapter 3. Language Extensions

3

Memory Models
The memory model determines the default memory type to use for function
arguments, automatic variables, and declarations with no explicit memory type
specifier. You specify the memory model on the Cx51 compiler command line
using the SMALL, COMPACT and LARGE control directives. Refer to
“Control Directives” on page 20 for more information about these directives.

NOTE
Except in very special select applications, the SMALL memory model generates
the fastest, most efficient code.

By explicitly declaring a variable with a memory type specifier, you may
override the default memory type imposed by the memory model. Refer to
“Memory Types” on page 95 for more information.

Small Model
In this model, all variables, by default, reside in the internal data memory of the
8051 system. (This is the same as if they were declared explicitly using the data
memory type specifier.) In this memory model, variable access is very efficient.
However, all objects, as well as the stack must fit into the internal RAM. Stack
size is critical because the real stack size depends upon the nesting depth of the
various functions. Typically, if the linker/locator is configured to overlay
variables in the internal data memory, the small model is the best model to use.

Keil Software — Cx51 Compiler User’s Guide 95

 3

Compact Model
Using the compact model, all variables, by default, reside in one page of external
data memory. (This is as if they were explicitly declared using the pdata
memory type specifier.) This memory model can accommodate a maximum of
256 bytes of variables. The limitation is due to the addressing scheme used,
which is indirect through registers R0 and R1 (@R0, @R1). This memory
model is not as efficient as the small model, therefore, variable access is not as
fast. However, the compact model is faster than the large model.

When using the compact model, the Cx51 compiler accesses external memory
with instructions that utilize the @R0 and @R1 operands. R0 and R1 are byte
registers and provide only the low-order byte of the address. If the compact
model is used with more than 256 bytes of external memory, the high-order
address byte (or page) is provided by Port 2 on the 8051. In this case, you must
initialize Port 2 with the proper external memory page to use. This can be done
in the startup code. You must also specify the starting address for PDATA to
the linker.

Refer to “STARTUP.A51” on page 151 for more information on configuring P2
for the compact model.

Large Model
In the large model, all variables, by default, reside in external data memory (up
to 64 KBytes). (This is the same as if they were explicitly declared using the
xdata memory type specifier.) The data pointer (DPTR) is used for addressing.
Memory access through this data pointer is inefficient, especially on variables
with a length of two or more bytes. This type of data access mechanism
generates more code than the small or compact models.

Memory Types
The Cx51 compiler explicitly supports the architecture of the 8051 and its
derivatives and provides access to all memory areas of the 8051. Each variable
may be explicitly assigned to a specific memory space.

Accessing the internal data memory is considerably faster than accessing the
external data memory. For this reason, place frequently used variables in

96 Chapter 3. Language Extensions

3

internal data memory. Place larger, less frequently used variables in external
data memory.

Explicitly Declared Memory Types
You may specify where variables are stored by including a memory type
specifier in the variable declaration.

The following table summarizes the available memory type specifiers.

Memory Type Description

code Program memory (64 KBytes); accessed by opcode MOVC @A+DPTR.

data Directly addressable internal data memory; fastest access to variables
(128 bytes).

idata Indirectly addressable internal data memory; accessed across the full internal
address space (256 bytes).

bdata Bit-addressable internal data memory; supports mixed bit and byte access
(16 bytes).

xdata External data memory (64 KBytes); accessed by opcode MOVX @DPTR.

far Extended RAM and ROM memory spaces (up to 16MB); accessed by user
defined routines or specific chip extensions (Philips 80C51MX, Dallas 390).

pdata Paged (256 bytes) external data memory; accessed by opcode MOVX @Rn.

As with the signed and unsigned attributes, you may include memory type
specifiers in the variable declaration.

Example:
char data var1;
char code text[] = "ENTER PARAMETER:";
unsigned long xdata array[100];
float idata x,y,z;
unsigned int pdata dimension;
unsigned char xdata vector[10][4][4];
char bdata flags;

NOTE
For compatibility with previous versions of the C51 compiler, you may specify
the memory area before the data type. For example, the following declaration
 data char x; is equivalent to char data x;

Nonetheless, this feature should not be used in new programs because it may not
be supported in future versions of the Cx51 compiler.

Keil Software — Cx51 Compiler User’s Guide 97

 3

Be careful when you are using the old C51 syntax together with memory-specific
pointers. In this case, the definition:
 data char *x; is equivalent to char *data x;

Implicit Memory Types
If the memory type specifier is omitted in a variable declaration, the default or
implicit memory type is automatically selected. Function arguments and
automatic variables that cannot be located in registers are also stored in the
default memory area.

The default memory type is determined by the SMALL, COMPACT and
LARGE compiler control directives. Refer to “Memory Models” on page 94 for
more information.

Data Types
The Cx51 compiler provides you with a number of basic data types to use in
your C programs. The Cx51 compiler supports the standard C data types as well
as several data types that are unique to the 8051 platform. The following table
lists the available data types.

Data Types Bits Bytes Value Range

bit † 1 0 to 1

signed char 8 1 -128 to +127

unsigned char 8 1 0 to 255

enum 8 / 16 1 or 2 -128 to +127 or –32768 to +32767

signed short 16 2 -32768 to +32767

unsigned short 16 2 0 to 65535

signed int 16 2 -32768 to +32767

unsigned int 16 2 0 to 65535

signed long 32 4 -2147483648 to +2147483647

unsigned long 32 4 0 to 4294967295

float 32 4 ±1.175494E-38 to ±3.402823E+38

sbit † 1 0 or 1

sfr † 8 1 0 to 255

sfr16 † 16 2 0 to 65535
† The bit, sbit, sfr, and sfr16 data types are not provided in ANSI C and are unique to the
Cx51 compiler. These data types are described in detail in the following sections.

98 Chapter 3. Language Extensions

3

Bit Types
The Cx51 compiler provides a bit data type that may be used for variable
declarations, argument lists, and function-return values. A bit variable is
declared like other C data types. For example:

static bit done_flag = 0; /* bit variable */

bit testfunc (/* bit function */
bit flag1, /* bit arguments */
bit flag2)

{
.
.
.
return (0); /* bit return value */
}

All bit variables are stored in a bit segment located in the internal memory area
of the 8051. Because this area is only 16 bytes long, a maximum of 128 bit
variables may be declared within any one scope.

Memory types may be included in the declaration of a bit variable. However,
because bit variables are stored in the internal data area of the 8051, the data
and idata memory types only may be included in the declaration. Any other
memory types are invalid.

The following restrictions apply to bit variables and bit declarations:

� Functions that disable interrupts (#pragma disable) and functions that are
declared using an explicit register bank (using n) cannot return a bit value.
The Cx51 compiler generates an error message for functions of this type that
attempt to return a bit type.

� A bit cannot be declared as a pointer. For example:
bit *ptr; /* invalid */

� An array of type bit is invalid. For example:
bit ware [5]; /* invalid */

Keil Software — Cx51 Compiler User’s Guide 99

 3

Bit-addressable Objects
Bit-addressable objects are objects that can be addressed as words or as bits.
Only data objects that occupy the bit-addressable area of the 8051 internal
memory fall into this category. The Cx51 compiler places variables declared
with the bdata memory type into this bit-addressable area. Furthermore,
variables declared with the bdata memory type must be global. You may declare
these variables as shown below:

int bdata ibase; /* Bit-addressable int */

char bdata bary [4]; /* Bit-addressable array */

The variables ibase and bary are bit-addressable. Therefore, the individual
bits of these variables may be directly accessed and modified. Use the sbit
keyword to declare new variables that access the bits of variables declared using
bdata. For example:

sbit mybit0 = ibase ^ 0; /* bit 0 of ibase */
sbit mybit15 = ibase ^ 15; /* bit 15 of ibase */

sbit Ary07 = bary[0] ^ 7; /* bit 7 of bary[0] */
sbit Ary37 = bary[3] ^ 7; /* bit 7 of bary[3] */

The above example represents declarations, not assignments to the bits of the
ibase and bary variables declared above. The expression following the carat
symbol (‘^’) in the example specifies the position of the bit to access with this
declaration. This expression must be a constant value. The range depends on
the type of the base variable included in the declaration. The range is 0 to 7 for
char and unsigned char, 0 to 15 for int, unsigned int, short, and unsigned
short, and 0 to 31 for long and unsigned long.

You may provide external variable declarations for the sbit type to access these
types in other modules. For example:

extern bit mybit0; /* bit 0 of ibase */
extern bit mybit15; /* bit 15 of ibase */

extern bit Ary07; /* bit 7 of bary[0] */
extern bit Ary37; /* bit 7 of bary[3] */

Declarations involving the sbit type require that the base object be declared with
the memory type bdata. The only exceptions are the variants for special
function bits. Refer to “Special Function Registers” on page 101 for more
information.

100 Chapter 3. Language Extensions

3

The following example shows how to change the ibase and bary bits using the
above declarations.

Ary37 = 0; /* clear bit 7 in bary[3] */
bary[3] = 'a'; /* Byte addressing */
ibase = -1; /* Word addressing */
mybit15 = 1; /* set bit 15 in ibase */

The bdata memory type is handled like the data memory type except that
variables declared with bdata reside in the bit-addressable portion of the
internal data memory. Note that the total size of this area of memory may not
exceed 16 bytes.

In addition to declaring sbit variables for scalar types, you may also declare sbit
variables for structures and unions. For example:

union lft
{
float mf;
long ml;
};

bdata struct bad
{
char m1;
union lft u;
} tcp;

sbit tcpf31 = tcp.u.ml ^ 31; /* bit 31 of float */
sbit tcpm10 = tcp.m1 ^ 0;
sbit tcpm17 = tcp.m1 ^ 7;

NOTE
You may not specify bit variables for the bit positions of a float. However, you
may include the float and a long in a union. Then, you may declare bit
variables to access the bits in the long type.

The sbit data type uses the specified variable as a base address and adds the bit
position to obtain a physical bit address. Physical bit addresses are not
equivalent to logical bit positions for certain data types. Physical bit position 0
refers to bit position 0 of the first byte. Physical bit position 8 refers to bit
position 0 of the second byte. Because int variables are stored high-byte first,
bit 0 of the integer is located in bit position 0 of the second byte. This is physical
bit position 8 when accessed using an sbit data type.

Keil Software — Cx51 Compiler User’s Guide 101

 3

Special Function Registers
The 8051 family of microcontrollers provides a distinct memory area for
accessing Special Function Registers (SFRs). SFRs are used in your program to
control timers, counters, serial I/Os, port I/Os, and peripherals. SFRs reside
from address 0x80 to 0xFF and can be accessed as bits, bytes, and words. For
more information about Special Function Registers, refer to the Intel 8-Bit
Embedded Controllers handbook or other 8051 data books.

Within the 8051 family, the number and type of SFRs vary. Note that no SFR
names are predefined by the Cx51 compiler. However, declarations for SFRs
are provided in include files.

The Cx51 compiler provides you with a number of include files for various 8051
derivatives. Each file contains declarations for the SFRs available on that
derivative. See “8051 Special Function Register Include Files” on page 228 for
more information about include files.

The Cx51 compiler provides access to SFRs with the sfr, sfr16, and sbit data
types. The following sections describe each of these data types.

sfr
SFRs are declared in the same fashion as other C variables. The only difference
is that the data type specified is sfr rather than char or int. For example:

sfr P0 = 0x80; /* Port-0, address 80h */
sfr P1 = 0x90; /* Port-1, address 90h */
sfr P2 = 0xA0; /* Port-2, address 0A0h */
sfr P3 = 0xB0; /* Port-3, address 0B0h */

P0, P1, P2, and P3 are the SFR name declarations. Names for sfr variables are
defined just like other C variable declarations. Any symbolic name may be used
in an sfr declaration.

The address specification after the equal sign (=) must be a numeric constant.
(Expressions with operators are not allowed.) Classic 8051 devices support the
SFR address range 0x80 to 0xFF. The Philips 80C51MX provides an additional
extended SFR space with the address range 0x180 to 0x1FF.

102 Chapter 3. Language Extensions

3

sfr16
Many of the newer 8051 derivatives use two SFRs with consecutive addresses to
specify 16-bit values. For example, the 8052 uses addresses 0xCC and 0xCD for
the low and high bytes of timer/counter 2. The Cx51 compiler provides the sfr16
data type to access 2 SFRs as a 16-bit SFR.

Access to 16-bit SFRs is possible only when the low byte immediately precedes
the high byte. The low byte is used as the address in the sfr16 declaration. For
example:

sfr16 T2 = 0xCC; /* Timer 2: T2L 0CCh, T2H 0CDh */
sfr16 RCAP2 = 0xCA; /* RCAP2L 0CAh, RCAP2H 0CBh */

In this example, T2 and RCAP2 are declared as 16-bit special function registers.

The sfr16 declarations follow the same rules as outlined for sfr declarations.
Any symbolic name can be used in an sfr16 declaration. The address
specification after the equal sign (‘=’) must be a numeric constant. Expressions
with operators are not allowed. The address must be the low byte of the SFR
low-byte, high-byte pair.

sbit
With typical 8051 applications, it is often necessary to access individual bits
within an SFR. The Cx51 compiler makes this possible with the sbit data type
which provides access to bit-addressable SFRs and other bit-addressable objects.
For example:

sbit EA = 0xAF;

This declaration defines EA to be the SFR bit at address 0xAF. On the 8051,
this is the enable all bit in the interrupt enable register.

NOTE
Not all SFRs are bit-addressable. Only those SFRs whose address is evenly
divisible by 8 are bit-addressable. The lower nibble of the SFR’s address must
be 0 or 8. For example, SFRs at 0xA8 and 0xD0 are bit-addressable, whereas
SFRs at 0xC7 and 0xEB are not. To calculate an SFR bit address, add the bit
position to the SFR byte address. So, to access bit 6 in the SFR at 0xC8, the SFR
bit address would be 0xCE (0xC8 + 6).

Keil Software — Cx51 Compiler User’s Guide 103

 3

Any symbolic name can be used in an sbit declaration. The expression to the
right of the equal sign (=) specifies an absolute bit address for the symbolic
name. There are three variants for specifying the address:

Variant 1: sfr_name ^ int_constant
This variant uses a previously declared sfr (sfr_name) as the
base address for the sbit. The address of the existing SFR
must be evenly divisible by 8. The expression following the
carat symbol (^) specifies the position of the bit to access
with this declaration. The bit position must be a number in
the 0 to 7 range. For example:

sfr PSW = 0xD0;
sfr IE = 0xA8;
sbit OV = PSW ^ 2;
sbit CY = PSW ^ 7;
sbit EA = IE ^ 7;

Variant 2: int_constant ^ int_constant
This variant uses an integer constant as the base address for
the sbit. The base address value must be evenly divisible by
8. The expression following the carat symbol (‘^’) specifies
the position of the bit to access with this declaration. The
bit position must be a number in the 0 to 7 range. For
example:

sbit OV = 0xD0 ^ 2;
sbit CY = 0xD0 ^ 7;
sbit EA = 0xA8 ^ 7;

Variant 3: int_constant
This variant uses an absolute bit address for the sbit. For
example:

sbit OV = 0xD2;
sbit CY = 0xD7;
sbit EA = 0xAF;

NOTE
Special function bits represent an independent declaration class that may not be
interchangeable with other bit declarations or bit fields.

The sbit data type declaration may be used to access individual bits of variables
declared with the bdata memory type specifier. Refer to “Bit-addressable
Objects” on page 99 for more information.

104 Chapter 3. Language Extensions

3

Absolute Variable Location
Variables may be located at absolute memory locations in your C program
source modules using the _at_ keyword. The usage for this feature is:

type �memory_space� variable_name _at_ constant;

where:

memory_space is the memory space for the variable. If missing from the
declaration, the default memory space is used. Refer to
“Memory Models” on page 94 for more information about
the default memory space.

type is the variable type.

variable_name is the variable name.

constant is the address at which to locate the variable.

The absolute address following _at_ must conform to the physical boundaries of
the memory space for the variable. The Cx51 compiler checks for invalid
address specifications.

NOTE
If you use the _at_ keyword to declare a variable that accesses an XDATA
peripheral, you may require the volatile keyword to ensure that the C compiler
does not optimize out necessary memory accesses.

The following restrictions apply to absolute variable location:

1. Absolute variables cannot be initialized.

2. Functions and variables of type bit cannot be located at an absolute address.

Keil Software — Cx51 Compiler User’s Guide 105

 3

The following example demonstrates how to locate several different variable
types using the _at_ keyword.

struct link
{
struct link idata *next;
char code *test;
};

struct link list idata _at_ 0x40; /* list at idata 0x40 */
char xdata text[256] _at_ 0xE000; /* array at xdata 0xE000 */
int xdata i1 _at_ 0x8000; /* int at xdata 0x8000 */

void main (void) {
link.next = (void *) 0;
i1 = 0x1234;
text [0] = 'a';

}

You may wish to declare your variables in one source module and access them in
another. Use the following external declarations to access the _at_ variables
defined above in another source file.

struct link
{
struct link idata *next;
char code *test;
};

extern struct link idata list; /* list at idata 0x40 */
extern char xdata text[256]; /* array at xdata 0xE000 */
extern int xdata i1; /* int at xdata 0x8000 */

106 Chapter 3. Language Extensions

3

Pointers
The Cx51 compiler supports the declaration of variable pointers using the *
character. Cx51 pointers can be used to perform all operations available in
standard C. However, because of the unique architecture of the 8051 and its
derivatives, the Cx51 compiler provides two different types of pointers: generic
pointers and memory-specific pointers. Each of these pointer types and pointer
conversion methods are discussed in the following sections.

Generic Pointers
Generic pointers are declared in the same fashion as standard C pointers. For
example:

char *s; /* string ptr */
int *numptr; /* int ptr */
long *state; /* Texas */

Generic pointers are always stored using three bytes. The first byte is the
memory type, the second is the high-order byte of the offset, and the third is the
low-order byte of the offset. Generic pointers may be used to access any variable
regardless of its location in 8051 memory space. Many of the Cx51 library
routines use these pointer types for this reason. By using these generic pointers,
a function can access data regardless of the memory in which it is stored.

NOTE
The code generated for a generic pointer executes more slowly than the
equivalent code generated for a memory-specific pointer because the memory
area is not known until run-time. The compiler cannot optimize memory
accesses and must generate generic code that can access any memory area. If
execution speed is a priority, you should use memory-specific pointers instead of
generic pointers wherever possible.

The following code and assembly listing shows the values assigned to generic
pointers for variables in different memory areas. Note that the first value is the
memory space followed by the high-order byte and low-order byte of the
address.

stmt level source
1 char *c_ptr; /* char ptr */
2 int *i_ptr; /* int ptr */
3 long *l_ptr; /* long ptr */

Keil Software — Cx51 Compiler User’s Guide 107

 3

4
5 void main (void)
6 {
7 1 char data dj; /* data vars */
8 1 int data dk;
9 1 long data dl;
10 1
11 1 char xdata xj; /* xdata vars */
12 1 int xdata xk;
13 1 long xdata xl;
14 1
15 1 char code cj = 9; /* code vars */
16 1 int code ck = 357;
17 1 long code cl = 123456789;
18 1
19 1
20 1 c_ptr = &dj; /* data ptrs */
21 1 i_ptr = &dk;
22 1 l_ptr = &dl;
23 1
24 1 c_ptr = &xj; /* xdata ptrs */
25 1 i_ptr = &xk;
26 1 l_ptr = &xl;
27 1
28 1 c_ptr = &cj; /* code ptrs */
29 1 i_ptr = &ck;
30 1 l_ptr = &cl;
31 1 }

ASSEMBLY LISTING OF GENERATED OBJECT CODE

; FUNCTION main (BEGIN)
; SOURCE LINE # 5
; SOURCE LINE # 6
; SOURCE LINE # 20

0000 750000 R MOV c_ptr,#00H
0003 750000 R MOV c_ptr+01H,#HIGH dj
0006 750000 R MOV c_ptr+02H,#LOW dj

; SOURCE LINE # 21
0009 750000 R MOV i_ptr,#00H
000C 750000 R MOV i_ptr+01H,#HIGH dk
000F 750000 R MOV i_ptr+02H,#LOW dk

; SOURCE LINE # 22
0012 750000 R MOV l_ptr,#00H
0015 750000 R MOV l_ptr+01H,#HIGH dl
0018 750000 R MOV l_ptr+02H,#LOW dl

; SOURCE LINE # 24
001B 750001 R MOV c_ptr,#01H
001E 750000 R MOV c_ptr+01H,#HIGH xj
0021 750000 R MOV c_ptr+02H,#LOW xj

; SOURCE LINE # 25
0024 750001 R MOV i_ptr,#01H
0027 750000 R MOV i_ptr+01H,#HIGH xk
002A 750000 R MOV i_ptr+02H,#LOW xk

; SOURCE LINE # 26
002D 750001 R MOV l_ptr,#01H
0030 750000 R MOV l_ptr+01H,#HIGH xl
0033 750000 R MOV l_ptr+02H,#LOW xl

; SOURCE LINE # 28
0036 7500FF R MOV c_ptr,#0FFH

108 Chapter 3. Language Extensions

3

0039 750000 R MOV c_ptr+01H,#HIGH cj
003C 750000 R MOV c_ptr+02H,#LOW cj

; SOURCE LINE # 29
003F 7500FF R MOV i_ptr,#0FFH
0042 750000 R MOV i_ptr+01H,#HIGH ck
0045 750000 R MOV i_ptr+02H,#LOW ck

; SOURCE LINE # 30
0048 7500FF R MOV l_ptr,#0FFH
004B 750000 R MOV l_ptr+01H,#HIGH cl
004E 750000 R MOV l_ptr+02H,#LOW cl

; SOURCE LINE # 31
0051 22 RET

; FUNCTION main (END)

In the above example listing, the generic pointers c_ptr, i_ptr, and l_ptr
are all stored in the internal data memory of the 8051. However, you may
specify the memory area in which a generic pointer is stored by using a memory
type specifier. For example:

char * xdata strptr; /* generic ptr stored in xdata */
int * data numptr; /* generic ptr stored in data */
long * idata varptr; /* generic ptr stored in idata */

These examples are pointers to variables that may be stored in any memory area.
The pointers, however, are stored in xdata, data, and idata respectively.

Keil Software — Cx51 Compiler User’s Guide 109

 3

Memory-specific Pointers
Memory-specific pointers always include a memory type specification in the
pointer declaration and always refer to a specific memory area. For example:

char data *str; /* ptr to string in data */
int xdata *numtab; /* ptr to int(s) in xdata */
long code *powtab; /* ptr to long(s) in code */

Because the memory type is specified at compile-time, the memory type byte
required by generic pointers is not needed by memory-specific pointers.
Memory-specific pointers can be stored using only one byte (idata, data, bdata,
and pdata pointers) or two bytes (code and xdata pointers).

NOTE
The code generated for a memory-specific pointer executes more quickly than
the equivalent code generated for a generic pointer. This is because the memory
area is known at compile-time rather than at run-time. The compiler can use
this information to optimize memory accesses. If execution speed is a priority,
you should use memory-specific pointers instead of generic pointers wherever
possible.

Like generic pointers, you may specify the memory area in which a
memory-specific pointer is stored. To do so, prefix the pointer declaration with
a memory type specifier. For example:

char data * xdata str; /* ptr in xdata to data char */
int xdata * data numtab; /* ptr in data to xdata int */
long code * idata powtab; /* ptr in idata to code long */

Memory-specific pointers may be used to access variables in the declared 8051
memory area only. Memory-specific pointers provide the most efficient method
of accessing data objects, but at the cost of reduced flexibility.

110 Chapter 3. Language Extensions

3

The following code and assembly listing shows how pointer values are assigned
to memory-specific pointers. Note that the code generated for these pointers is
much less involved than the code generated in the generic pointers example
listing in the previous section.

stmt level source

1 char data *c_ptr; /* memory-specific char ptr */
2 int xdata *i_ptr; /* memory-specific int ptr */
3 long code *l_ptr; /* memory-specific long ptr */
4
5 long code powers_of_ten [] =
6 {
7 1L,
8 10L,
9 100L,
10 1000L,
11 10000L,
12 100000L,
13 1000000L,
14 10000000L,
15 100000000L
16 };
17
18 void main (void)
19 {
20 1 char data strbuf [10];
21 1 int xdata ringbuf [1000];
22 1
23 1 c_ptr = &strbuf [0];
24 1 i_ptr = &ringbuf [0];
25 1 l_ptr = &powers_of_ten [0];
26 1 }

ASSEMBLY LISTING OF GENERATED OBJECT CODE

; FUNCTION main (BEGIN)
; SOURCE LINE # 18
; SOURCE LINE # 19
; SOURCE LINE # 23

0000 750000 R MOV c_ptr,#LOW strbuf
; SOURCE LINE # 24

0003 750000 R MOV i_ptr,#HIGH ringbuf
0006 750000 R MOV i_ptr+01H,#LOW ringbuf

; SOURCE LINE # 25
0009 750000 R MOV l_ptr,#HIGH powers_of_ten
000C 750000 R MOV l_ptr+01H,#LOW powers_of_ten

; SOURCE LINE # 26
000F 22 RET

; FUNCTION main (END)

Keil Software — Cx51 Compiler User’s Guide 111

 3

Pointer Conversions
The Cx51 compiler may convert between memory-specific pointers and generic
pointers. Pointer conversions can be forced by explicit program code using type
casts or can be coerced by the compiler implicitly.

The Cx51 compiler converts a memory-specific pointer into a generic pointer
when the memory-specific pointer is passed as an argument to a function which
requires a generic pointer. This is the case for functions such as printf, sprintf,
and gets which use generic pointers as arguments. For example:

extern int printf (void *format, ...);

extern int myfunc (void code *p, int xdata *pq);

int xdata *px;
char code *fmt = "value = %d | %04XH\n";

void debug_print (void) {
printf (fmt, *px, *px); /* fmt is converted */
myfunc (fmt, px); /* no conversions */

}

In the call to printf, the argument fmt which represents a 2-byte code pointer is
automatically converted or coerced into a 3-byte generic pointer. This is done
because the prototype for printf requires a generic pointer as the first argument.

NOTE
A memory-specific pointer used as an argument to a function is always
converted into a generic pointer if no function prototype is present. This can
cause errors if the called function actually expects a shorter pointer as an
argument. Avoid these kinds of errors in programs by using #include files and
prototype all external functions. This guarantees conversion of the necessary
types by the compiler and ensures that the compiler detects type conversion
errors.

112 Chapter 3. Language Extensions

3

The following table details the process involved in converting generic pointers
(generic *) to memory-specific pointers (code *, xdata *, idata *, data *,
pdata *).

Conversion Type Description

generic * to code * The offset section (2 bytes) of the generic pointer is used.

generic * to xdata * The offset section (2 bytes) of the generic pointer is used.

generic * to data * The low-order byte of the generic pointer offset is used.
The high-order byte is discarded.

generic * to idata * The low-order byte of the generic pointer offset is used.
The high-order byte is discarded.

generic * to pdata * The low-order byte of the generic pointer offset is used.
The high-order byte is discarded.

The following table describes the process involved in converting
memory-specific pointers (code *, xdata *, idata *, data *, pdata *) to generic
pointers (generic *).

Conversion Type Description

code * to generic * The memory type of the generic pointer is set to 0xFF for code.
The 2-byte offset of the code * is used.

xdata * to generic * The memory type of the generic pointer is set to 0x01 for xdata.
The 2-byte offset of the xdata * is used.

data * to generic * The 1-byte offset of the idata * / data * is converted to an unsigned
int and used as the offset.

idata * to generic * The memory type of the generic pointer is set to 0x00 for idata / data.
pdata * to generic * The memory type of the generic pointer is set to 0xFE for pdata.

The 1-byte offset of the pdata * is converted to an unsigned int and
used as the offset.

Keil Software — Cx51 Compiler User’s Guide 113

 3

The following listing illustrates a few pointer conversions and the resulting code:

stmt level source
1 int *p1; /* generic ptr (3 bytes) */
2 int xdata *p2; /* xdata ptr (2 bytes) */
3 int idata *p3; /* idata ptr (1 byte) */
4 int code *p4; /* code ptr (2 bytes */
5
6 void pconvert (void) {
7 1 p1 = p2; /* xdata* to generic* */
8 1 p1 = p3; /* idata* to generic* */
9 1 p1 = p4; /* code* to generic* */
10 1
11 1 p4 = p1; /* generic* to code* */
12 1 p3 = p1; /* generic* to idata* */
13 1 p2 = p1; /* generic* to xdata* */
14 1
15 1 p2 = p3; /* idata* to xdata* (WARN) */

*** WARNING 259 IN LINE 15 OF P.C: pointer: different mspace
16 1 p3 = p4; /* code* to idata* (WARN) */

*** WARNING 259 IN LINE 16 OF P.C: pointer: different mspace
17 1 }

ASSEMBLY LISTING OF GENERATED OBJECT CODE
; FUNCTION pconvert (BEGIN)

; SOURCE LINE # 7
0000 750001 R MOV p1,#01H
0003 850000 R MOV p1+01H,p2
0006 850000 R MOV p1+02H,p2+01H

; SOURCE LINE # 8
0009 750000 R MOV p1,#00H
000C 750000 R MOV p1+01H,#00H
000F 850000 R MOV p1+02H,p3

; SOURCE LINE # 9
0012 7B05 MOV R3,#0FFH
0014 AA00 R MOV R2,p4
0016 A900 R MOV R1,p4+01H
0018 8B00 R MOV p1,R3
001A 8A00 R MOV p1+01H,R2
001C 8900 R MOV p1+02H,R1

; SOURCE LINE # 11
001E AE02 MOV R6,AR2
0020 AF01 MOV R7,AR1
0022 8E00 R MOV p4,R6
0024 8F00 R MOV p4+01H,R7

; SOURCE LINE # 12
0026 AF01 MOV R7,AR1
0028 8F00 R MOV p3,R7

; SOURCE LINE # 13
002A AE02 MOV R6,AR2
002C 8E00 R MOV p2,R6
002E 8F00 R MOV p2+01H,R7

; SOURCE LINE # 15
0030 750000 R MOV p2,#00H
0033 8F00 R MOV p2+01H,R7

; SOURCE LINE # 16
0035 850000 R MOV p3,p4+01H

; SOURCE LINE # 17
0038 22 RET

; FUNCTION pconvert (END)

114 Chapter 3. Language Extensions

3

Abstract Pointers
Abstract pointer types access fixed memory locations in any memory area. You
may also use abstract pointers to call functions located at absolute or fixed
addresses.

Abstract pointer types are described here using code examples with the
following variables.

char xdata *px; /* ptr to xdata */
char idata *pi; /* ptr to idata */
char code *pc; /* ptr to code */

char c; /* char variable in data space */
int i; /* int variable in data space */

The following example assigns the address of the main C function to a pointer
(stored in data memory) to a char stored in code memory.

Source pc = (void *) main;

Object 0000 750000 R MOV pc,#HIGH main
0003 750000 R MOV pc+01H,#LOW main

The following example casts the address of the variable i (which is an
int data *) to a pointer to a char in idata. Since i is stored in data and since
indirectly accessed data is idata, this pointer conversion is valid.

Source pi = (char idata *) &i;

Object 0000 750000 R MOV pi,#LOW i

The following example casts a pointer to a char in xdata to a pointer to a char
in idata. Since xdata pointers occupy 2 bytes and idata pointers occupy 1 byte,
this pointer conversion may not yield the desired results since the upper byte of
the xdata pointer is ignored. Refer to “Pointer Conversions” on page 111 for
more information about converting between different pointer types.

Source pi = (char idata *) px;

Object 0000 850000 R MOV pi,px+01H

The following example casts 0x1234 as a pointer to a char in code memory.

Source pc = (char code *) 0x1234;

Object 0000 750012 R MOV pc,#012H
0003 750034 R MOV pc+01H,#034H

Keil Software — Cx51 Compiler User’s Guide 115

 3

The following example casts 0xFF00 as a function pointer that takes no
arguments and returns an int, invokes the function, and assigns the return value
to the variable i. The portion of this example that performs the function pointer
type cast is: ((int (code *)(void)) 0xFF00). By adding the argument list to the
end of the function pointer, the compiler can correctly invoke the function.

Source i = ((int (code *)(void)) 0xFF00) ();

Object 0000 12FF00 LCALL 0FF00H
0003 8E00 R MOV i,R6
0005 8F00 R MOV i+01H,R7

The following example casts 0x8000 as a pointer to a char in code memory,
extracts the char pointed to, and assigns it to the variable c.

Source c = *((char code *) 0x8000);

Object 0000 908000 MOV DPTR,#08000H
0003 E4 CLR A
0004 93 MOVC A,@A+DPTR
0005 F500 R MOV c,A

The following example casts 0xFF00 as a pointer to a char in xdata memory,
extracts the char pointed to, and adds it to the variable c.

Source c += *((char xdata *) 0xFF00);

Object 0000 90FF00 MOV DPTR,#0FF00H
0003 E0 MOVX A,@DPTR
0004 2500 R ADD A,c
0006 F500 R MOV c,A

The following example casts 0xF0 as a pointer to a char in idata memory,
extracts the char pointed to, and adds it to the variable c.

Source c += *((char idata *) 0xF0);

Object 0000 78F0 MOV R0,#0F0H
0002 E6 MOV A,@R0
0003 2500 R ADD A,c
0005 F500 R MOV c,A

116 Chapter 3. Language Extensions

3

The following example casts 0xE8 as a pointer to a char in pdata memory,
extracts the char pointed to, and adds it to the variable c.

Source c += *((char pdata *) 0xE8);

Object 0000 78E8 MOV R0,#0E8H
0002 E2 MOVX A,@R0
0003 2500 R ADD A,c
0005 F500 R MOV c,A

The following example casts 0x2100 as a pointer to an int in code memory,
extracts the int pointed to, and assigns it to the variable i.
Source i = *((int code *) 0x2100);

Object 0000 902100 MOV DPTR,#02100H
0003 E4 CLR A
0004 93 MOVC A,@A+DPTR
0005 FE MOV R6,A
0006 7401 MOV A,#01H
0008 93 MOVC A,@A+DPTR
0009 8E00 R MOV i,R6
000B F500 R MOV i+01H,A

The following example casts 0x4000 as a pointer to a pointer in xdata that
points to a char in xdata. The assignment extracts the pointer stored in xdata
that points to the char which is also stored in xdata.

Source px = *((char xdata * xdata *) 0x4000);

Object 0000 904000 MOV DPTR,#04000H
0003 E0 MOVX A,@DPTR
0004 FE MOV R6,A
0005 A3 INC DPTR
0006 E0 MOVX A,@DPTR
0007 8E00 R MOV px,R6
0009 F500 R MOV px+01H,A

Keil Software — Cx51 Compiler User’s Guide 117

 3

Like the previous example, this example casts 0x4000 as a pointer to a pointer in
xdata that points to a char in xdata. However, the pointer is accessed as an
array of pointers in xdata. The assignment accesses array element 0 (which is
stored at 0x4000 in xdata) and extracts the pointer there that points to the char
stored in xdata.

Source px = ((char xdata * xdata *) 0x4000) [0];

Object 0000 904000 MOV DPTR,#04000H
0003 E0 MOVX A,@DPTR
0004 FE MOV R6,A
0005 A3 INC DPTR
0006 E0 MOVX A,@DPTR
0007 8E00 R MOV px,R6
0009 F500 R MOV px+01H,A

The following example is identical to the previous one except that the
assignment accesses element 1 from the array. Since the object pointed to is a
pointer in xdata (to a char), the size of each element in the array is 2 bytes. The
assignment accesses array element 1 (which is stored at 0x4002 in xdata) and
extracts the pointer there that points to the char stored in xdata.

Source px = ((char xdata * xdata *) 0x4000) [1];

Object 0000 904002 MOV DPTR,#04002H
0003 E0 MOVX A,@DPTR
0004 FE MOV R6,A
0005 A3 INC DPTR
0006 E0 MOVX A,@DPTR
0007 8E00 R MOV px,R6
0009 F500 R MOV px+01H,A

118 Chapter 3. Language Extensions

3

Function Declarations
The Cx51 compiler provides a number of extensions for standard C function
declarations. These extensions allow you to:

� Specify a function as an interrupt procedure

� Choose the register bank used

� Select the memory model

� Specify reentrancy

� Specify alien (PL/M-51) functions

You may include these extensions or attributes (many of which may be
combined) in the function declaration. Use the following standard format for
your Cx51 function declarations.

�return_type� funcname (�args�) �{small | compact | large}�
 �reentrant� �interrupt n� �using n�

where:

return_type is the type of the value returned from the function.
If no type is specified, int is assumed.

funcname is the name of the function.

args is the argument list for the function.

small, compact, or large is the explicit memory model for the function.

reentrant indicates that the function is recursive or reentrant.

interrupt indicates that the function is an interrupt function.

using specifies which register bank the function uses.

Descriptions of these attributes and other features are described in detail in the
following sections.

Keil Software — Cx51 Compiler User’s Guide 119

 3

Function Parameters and the Stack
The stack pointer on the classic 8051 accesses internal data memory only. The
Cx51 compiler locates the stack area immediately following all variables in the
internal data memory. The stack pointer accesses internal memory indirectly and
can use all of the internal data memory up to the 0xFF limit.

The total stack space of the classic 8051 is limited: only 256 bytes maximum.
Rather than consume stack space with function parameters or arguments, The
Cx51 compiler assigns a fixed memory location for each function parameter.
When a function is called, the caller must copy the arguments into the assigned
memory locations before transferring control to the desired function. The
function then extracts its parameters, as needed, from these fixed memory
locations. Only the return address is stored on the stack during this process.
Interrupt functions require more stack space because they must switch register
banks and save the values of a few registers on the stack.

NOTE
The Cx51 compiler uses extended stack areas that are available in some
enhanced 8051 variants. In this way the stack space can be increased to several
KiloBytes.

By default, the Cx51 compiler passes up to three function arguments in registers.
This enhances speed performance. For more information, refer to “Passing
Parameters in Registers” on page 120.

NOTE
Some 8051 derivatives provide only 64 bytes of on-chip data memory; most
devices have just 256 bytes. Take this into consideration when determining
which memory model to use, because the amount of on-chip data and idata
memory used directly affects the amount of stack space.

120 Chapter 3. Language Extensions

3

Passing Parameters in Registers
The Cx51 compiler allows up to three function arguments to be passed in CPU
registers. This mechanism significantly improves system performance as
arguments do not have to be written to and read from memory. Argument or
parameter passing can be controlled by the REGPARMS and NOREGPARMS
control directives defined in the previous chapter.

The following table details the registers used for different argument positions
and data types.

Argument Number char, 1-byte ptr int, 2-byte ptr long, float generic ptr

1 R7 R6 & R7 R4—R7 R1—R3

2 R5 R4 & R5 R4—R7 R1—R3

3 R3 R2 & R3 R1—R3

If no registers are available for argument passing, fixed memory locations are
used for function parameters.

Function Return Values
CPU registers are always used for function return values. The following table
lists the return types and the registers used for each.

Return Type Register Description

bit Carry Flag

char, unsigned char,
1-byte ptr

R7

int, unsigned int,
2-byte ptr

R6 & R7 MSB in R6, LSB in R7

long, unsigned long R4-R7 MSB in R4, LSB in R7

float R4-R7 32-Bit IEEE format
generic ptr R1-R3 Memory type in R3, MSB R2, LSB R1

NOTE
If the first parameter of a function is a bit type, then other parameters are not
passed in registers. This is because parameters that are passed in registers are
out of sequence with the numbering scheme shown above. For this reason, bit
parameters should be declared at the end of the argument list.

Keil Software — Cx51 Compiler User’s Guide 121

 3

Specifying the Memory Model for a Function
A function’s arguments and local variables are stored in the default memory
space specified by the memory model. Refer to “Memory Models” on page 94
for more information.

You may, however, specify which memory model to use for a single function by
including the small, compact, or large function attribute in the function
declaration. For example:

#pragma small /* Default to small model */

extern int calc (char i, int b) large reentrant;
extern int func (int i, float f) large;
extern void *tcp (char xdata *xp, int ndx) small;

int mtest (int i, int y) /* Small model */
{
return (i * y + y * i + func(-1, 4.75));
}

int large_func (int i, int k) large /* Large model */
{
return (mtest (i, k) + 2);
}

The advantage of functions using the SMALL memory model is that the local
data and function argument parameters are stored in the internal 8051 RAM.
Therefore, data access is very efficient. The internal memory is limited.
Occasionally, the small model cannot satisfy the requirements of a very large
program and other memory models must be used. For this situation, you may
declare that a function use a different memory model, as shown above.

By specifying the function model attribute in the function declaration, you can
select which of the three possible reentrant stacks and frame pointers to use.
Stack access in the SMALL model is more efficient than in the LARGE model.

122 Chapter 3. Language Extensions

3

Specifying the Register Bank for a Function
The lowest 32 bytes of all members of the 8051 family are grouped into 4 banks
of 8 registers each. Programs can access these registers as R0 through R7. The
register bank is selected by two bits of the program status word (PSW). Register
banks are useful when processing interrupts or when using a real-time operating
system. Rather than saving the 8 registers, the CPU can switch to a different
register bank for the duration of the interrupt service routine.

The using function attribute is used to specify which register bank a function
uses. For example:

void rb_function (void) using 3
{
.
.
.
}

The using attribute takes as an argument an integer constant in the 0 to 3 range
value. Expressions with operators are not allowed. The using attribute is not
allowed in function prototypes. The using attribute affects the object code of the
function as follows:

� The currently selected register bank is saved on the stack at function entry.

� The specified register bank is set.

� The former register bank is restored before the function is exited.

Keil Software — Cx51 Compiler User’s Guide 123

 3

The following example shows how to specify the using function attribute and
what the generated assembly code for the function entry and exit looks like.

stmt level source

1
2 extern bit alarm;
3 int alarm_count;
4 extern void alfunc (bit b0);
5
6 void falarm (void) using 3 {
7 1 alarm_count++;
8 1 alfunc (alarm = 1);
9 1 }

ASSEMBLY LISTING OF GENERATED OBJECT CODE

; FUNCTION falarm (BEGIN)
0000 C0D0 PUSH PSW
0002 75D018 MOV PSW,#018H

; SOURCE LINE # 6
; SOURCE LINE # 7

0005 0500 R INC alarm_count+01H
0007 E500 R MOV A,alarm_count+01H
0009 7002 JNZ ?C0002
000B 0500 R INC alarm_count
000D ?C0002:

; SOURCE LINE # 8
000D D3 SETB C
000E 9200 E MOV alarm,C
0010 9200 E MOV ?alfunc?BIT,C
0012 120000 E LCALL alfunc

; SOURCE LINE # 9
0015 D0D0 POP PSW
0017 22 RET

; FUNCTION falarm (END)

In the previous example, the code starting at offset 0000h saves the initial PSW
on the stack and sets the new register bank. The code starting at offset 0015h
restores the original register bank by popping the original PSW from the stack.

NOTE
The using attribute may not be used in functions that return a value in registers.
You must exercise extreme care to ensure that register bank switches are
performed only in carefully controlled areas. Failure to do so may yield
incorrect function results. Even when you use the same register bank, functions
declared with the using attribute cannot return a bit value.

The using attribute is most useful in interrupt functions. Usually a different
register bank is specified for each interrupt priority level. Therefore, you could
assign one register bank for all non-interrupt code, a second register bank for the
high-level interrupt, and a third register bank for the low-level interrupt.

124 Chapter 3. Language Extensions

3

Register Bank Access
The Cx51 compiler defines the default register bank in a function. The
REGISTERBANK control directive specifies which default register bank to use
for all functions in a source file. This directive, however, does not generate code
to switch the register bank.

Upon reset, the 8051 loads the PSW with 00h which selects register bank 0. By
default, all non-interrupt functions use register bank 0. To change this, you
must:

� Modify the startup code to select a different register bank

� Specify the REGISTERBANK control directive along with the new register
bank number

By default, the Cx51 compiler generates code that accesses the registers R0—R7
using absolute addresses. This is done for maximum performance. Absolute
register accesses are controlled by the AREGS and NOAREGS control
directives.

Functions which employ absolute register accesses must not be called from
another function that uses a different register bank. Doing so causes
unpredictable results because the called function assumes that a different register
bank is selected.

To make a function insensitive to the current register bank, the function must be
compiled using the NOAREGS control directive. This would be useful for a
function that was called from the main program and also from an interrupt
function that uses a different register bank.

NOTE
The Cx51 compiler does not and cannot detect a register bank mismatch
between functions. Therefore, make sure that functions using alternate register
banks call only other functions that do not assume a default register bank.

Refer to “Chapter 2. Compiling with the Cx51” on page 17 for more information
regarding the REGISTERBANK, AREGS, and NOAREGS directives.

Keil Software — Cx51 Compiler User’s Guide 125

 3

Interrupt Functions
The 8051 and its derivatives provide a number of hardware interrupts that may
be used for counting, timing, detecting external events, and sending and
receiving data using the serial interface. The standard interrupts found on an
8051 are listed in the following table:

Interrupt Number Interrupt Description Address

0 EXTERNAL INT 0 0003h

1 TIMER/COUNTER 0 000Bh

2 EXTERNAL INT 1 0013h

3 TIMER/COUNTER 1 001Bh

4 SERIAL PORT 0023h

As 8051 vendors create new parts, more interrupts are added. The Cx51
compiler supports interrupt functions for 32 interrupts (0-31). Use the interrupt
vector address in the following table to determine the interrupt number.

Interrupt Number Address Interrupt Number Address

0 0003h 16 0083h
1 000Bh 17 008Bh
2 0013h 18 0093h
3 001Bh 19 009Bh
4 0023h 20 00A3h
5 002Bh 21 00ABh
6 0033h 22 00B3h
7 003Bh 23 00BBh
8 0043h 24 00C3h
9 004Bh 25 00CBh
10 0053h 26 00D3h
11 005Bh 27 00DBh
12 0063h 28 00E3h
13 006Bh 29 00EBh
14 0073h 30 00F3h
15 007Bh 31 00FBh

126 Chapter 3. Language Extensions

3

The interrupt function attribute, when included in a declaration, specifies that
the associated function is an interrupt function. For example:

unsigned int interruptcnt;
unsigned char second;

void timer0 (void) interrupt 1 using 2 {
if (++interruptcnt == 4000) { /* count to 4000 */
second++; /* second counter */
interruptcnt = 0; /* clear int counter */

}
}

The interrupt attribute takes as an argument an integer constant in the 0 to 31
value range. Expressions with operators and the interrupt attribute are not
allowed in function prototypes. The interrupt attribute affects the object code
of the function as follows:

� The contents of the SFR ACC, B, DPH, DPL, and PSW, when required, are
saved on the stack at function invocation time.

� All working registers used in the interrupt function are stored on the stack if a
register bank is not specified with the using attribute.

� The working registers and special registers that were saved on the stack are
restored before exiting the function.

� The function is terminated by the 8051 RETI instruction.

In addition, the Cx51 compiler generates the interrupt vector automatically.

Keil Software — Cx51 Compiler User’s Guide 127

 3

The following sample program demonstrates how to use the interrupt attribute.
The program also shows you what the code generated to enter and exit the
interrupt function looks like. The using function attribute is used to select a
register bank different from that of the non-interrupt program code. However,
because no working registers are needed in this function, the code generated to
switch the register bank is eliminated by the optimizer.

stmt level source

1 extern bit alarm;
2 int alarm_count;
3
4
5 void falarm (void) interrupt 1 using 3 {
6 1 alarm_count *= 2;
7 1 alarm = 1;
8 1 }

ASSEMBLY LISTING OF GENERATED OBJECT CODE

; FUNCTION falarm (BEGIN)
0000 C0E0 PUSH ACC
0002 C0D0 PUSH PSW

; SOURCE LINE # 5
; SOURCE LINE # 6

0004 E500 R MOV A,alarm_count+01H
0006 25E0 ADD A,ACC
0008 F500 R MOV alarm_count+01H,A
000A E500 R MOV A,alarm_count
000C 33 RLC A
000D F500 R MOV alarm_count,A

; SOURCE LINE # 7
000F D200 E SETB alarm

; SOURCE LINE # 8
0011 D0D0 POP PSW
0013 D0E0 POP ACC
0015 32 RETI

; FUNCTION falarm (END)

In the example above, note that the ACC and PSW registers are saved at offset
0000h and restored at offset 0011h. Note also the RETI instruction generated
to exit the interrupt.

128 Chapter 3. Language Extensions

3

The following rules apply to interrupt functions.

� No function arguments may be specified for an interrupt function. The
compiler emits an error message if an interrupt function is declared with any
arguments.

� Interrupt function declarations may not include a return value. They must be
declared as void (see the above examples). The compiler emits an error
message if any attempt is made to define a return value for the interrupt
function. The implicit int return value, however, is ignored by the compiler.

� The compiler recognizes direct calls to interrupt functions and rejects them.
It is pointless to call interrupt procedures directly, because exiting the
procedure causes execution of the RETI instruction which affects the
hardware interrupt system of the 8051 chip. Because no interrupt request on
the part of the hardware existed, the effect of this instruction is indeterminate
and usually fatal. Do not call an interrupt function indirectly through a
function pointer.

� The compiler generates an interrupt vector for each interrupt function. The
code generated for the vector is a jump to the beginning of the interrupt
function. Generation of interrupt vectors can be suppressed by including the
NOINTVECTOR control directive in the Cx51 command line. In this case,
you must provide interrupt vectors from separate assembly modules. Refer to
the INTVECTOR and INTERVAL control directives for more information
about the interrupt vector table.

� The Cx51 compiler allows interrupt numbers within the 0-31 range. Refer
to your 8051 derivative document to determine which interrupts are available.

� Functions called from an interrupt procedure must function with the same
register bank as the interrupt procedure. When the NOAREGS directive is
not explicitly specified, the compiler may generate absolute register accesses
using the register bank selected (by the using attribute or by the
REGISTERBANK control) for that function. Unpredictable results may
occur when a function assumes a register bank other than the one currently
selected. Refer to “Register Bank Access” on page 124 for more information.

Keil Software — Cx51 Compiler User’s Guide 129

 3

Reentrant Functions
A reentrant function can be shared by several processes at the same time. When
a reentrant function is executing, another process can interrupt the execution and
then begin to execute that same reentrant function. Normally, functions in the
Cx51 compiler cannot be called recursively or in a fashion which causes
reentrancy. The reason for this limitation is that function arguments and local
variables are stored in fixed memory locations. The reentrant function attribute
allows you to declare functions that may be reentrant and, therefore, may be
called recursively. For example:

int calc (char i, int b) reentrant {
int x;
x = table [i];
return (x * b);

}

Reentrant functions can be called recursively and can be called simultaneously
by two or more processes. Reentrant functions are often required in real-time
applications or in situations where interrupt code and non-interrupt code must
share a function.

As in the above example, you may selectively define (using the reentrant
attribute) functions as being reentrant. For each reentrant function, a reentrant
stack area is simulated in internal or external memory depending upon the
memory model used, as follows:

� Small model reentrant functions simulate the reentrant stack in idata
memory.

� Compact model reentrant functions simulate the reentrant stack in pdata
memory.

� Large model reentrant functions simulate the reentrant stack in xdata
memory.

130 Chapter 3. Language Extensions

3

Reentrant functions use the default memory model to determine which memory
space to use for the reentrant stack. You may specify (with the small, compact,
and large function attributes) which memory model to use for a function. Refer
to “Specifying the Memory Model for a Function” on page 121 for more
information about memory models and function declarations.

The following rules apply to functions declared with the reentrant attribute.

� bit type function arguments may not be used. Local bit scalars are also not
available. The reentrant capability does not support bit-addressable variables.

� Reentrant functions must not be called from alien functions.

� Reentrant function cannot use the alien attribute specifier to enable PL/M-51
argument passing conventions.

� A reentrant function may simultaneously have other attributes like using and
interrupt and may include an explicit memory model attribute (small,
compact, large).

� Return addresses are stored in the 8051 hardware stack. Any other required
PUSH and POP operations also affect the 8051 hardware stack.

� Reentrant functions using different memory models may be intermixed.
However, each reentrant function must be properly prototyped and must
include its memory model attribute in the prototype. This is necessary for
calling routines to place the function arguments in the proper reentrant stack.

� Each of the three possible reentrant models contains its own reentrant stack
area and stack pointer. For example, if small and large reentrant functions
are declared in a module, both small and large reentrant stacks are created
along with two associated stack pointers (one for small and one for large).

The reentrant stack simulation architecture is inefficient, but necessary due to a
lack of suitable addressing methods available on the 8051. For this reason, use
reentrant functions sparingly.

The simulated stack used by reentrant functions has its own stack pointer which
is independent of the 8051 stack and stack pointer. The stack and stack pointer
are defined and initialized in the STARTUP.A51 file.

Keil Software — Cx51 Compiler User’s Guide 131

 3

The following table details the stack pointer assembler variable name, data area,
and size for each of the three memory models.

Model Stack Pointer Stack Area

SMALL ?C_IBP (1 Byte) Indirectly accessible internal memory (idata).
256 bytes maximum stack area.

COMPACT ?C_PBP (1 Byte) Page-addressable external memory (pdata).
256 bytes maximum stack area.

LARGE ?C_XBP (2 Bytes) Externally accessible memory (xdata). 64 KBytes
maximum stack area.

The simulated stack area for reentrant functions is organized from top to bottom.
The 8051 hardware stack is just the opposite and is organized bottom to top.
When using the SMALL memory model, both the simulated stack and the 8051
hardware stack share the same memory area but from opposite directions.

The simulated stack and stack pointers are declared and initialized in the Cx51
startup code in STARTUP.A51 which can be found in the LIB subdirectory. You
must modify the startup code to specify which simulated stack(s) to initialize in
order to use reentrant functions. You can also modify the starting address for the
top of the simulated stack(s) in the startup code. Refer to “STARTUP.A51” on
page 151 for more information on reentrant function stack areas.

132 Chapter 3. Language Extensions

3

Alien Function (PL/M-51 Interface)
You may call routines written in PL/M-51 from your C programs to access
PL/M-51 routines from C, declare them external with the alien function type
specifier. For example:

extern alien char plm_func (int, char);

char c_func (void) {
int i;
char c;

for (i = 0; i < 100; i++) {
c = plm_func (i, c); /* call PL/M func */

}
return (c);

}

You may create functions in C that are called by PL/M-51 routines. To do this,
use the alien function type specifier in the C function declaration. For example:

alien char c_func (char a, int b) {
return (a * b);

}

Parameters and return values of PL/M-51 functions may be any of the following
types: bit, char, unsigned char, int, and unsigned int. Other types, including
long, float, and all types of pointers, can be declared in C functions with the
alien type specifier. However, use these types with care because PL/M-51 does
not directly support 32-bit binary integers or floating-point numbers.

Public variables declared in the PL/M-51 module are available to your C
programs by declaring them external like you would for any C variable.

Keil Software — Cx51 Compiler User’s Guide 133

 3

Real-time Function Tasks
The Cx51 compiler provides support for the RTX51 Full and RTX51 Tiny
real-time multitasking operating systems through use of the _task_ and
priority keywords. The _task_ keyword defines a function as a real-time
task. The _priority_ keyword specifies the priority for the task.

For example:
void func (void) _task_ num _priority_ pri

where:

num is a task ID number from 0 to 255 for RTX51 Full or 0 to 15
for RTX51 Tiny.

pri is the priority for the task. Refer to the RTX51 User’s Guide
or the RTX51 Tiny User’s Guide for more information.

Task functions must be declared with a void return type and a void argument list.

134 Chapter 3. Language Extensions

3

Keil Software — Cx51 Compiler User’s Guide 135

 4

Chapter 4. Preprocessor
The preprocessor built into the Cx51 compiler handles directives found in the
source file. The Cx51 compiler supports all of the ANSI Standard C directives.
This chapter gives a brief overview of the preprocessor.

Directives
Preprocessor directives must be the first non-whitespace text specified on a line.
All directives are prefixed with the pound or number-sign character (‘#’). For
example:

#pragma
#include <stdio.h>
#define DEBUG 1

The following table lists the preprocessor directives and gives a brief description
of each.

Directive Description

define Defines a preprocessor macro or constant.

elif Initiates an alternative branch of the if condition, when the previous if, ifdef, ifndef,
or elif branch was not taken.

else Initiates an alternative branch when the previous if, ifdef, or ifndef branch was not
taken.

endif Ends an if, ifdef, ifndef, elif, or else block.
error Outputs an error message defined by the user. This directive instructs the

compiler to emit the specified error message.
ifdef Evaluates an expression for conditional compilation. The argument to be evaluated

is the name of a definition.
ifndef Same as ifdef but the evaluation succeeds if the definition is not defined.

if Evaluates an expression for conditional compilation.

include Reads source text from an external file. The notation sequence determines the
search sequence of the included files. Cx51 searches for include files specified
with less-than/greater-than symbols (‘<’ ‘>’) in the include file directory. Cx51
searches for include files specified with double-quotes (“ “) in the current directory.

line Specifies a line number together with an optional filename. These specifications
are used in error messages to identify the error position.

pragma Allows you to specify directives that may be included on the C51 command line.
Pragmas may contain the same directives that are specified on the command line.

undef Deletes a preprocessor macro or constant definition.

136 Chapter 4. Preprocessor

4

Stringize Operator
The stringize or number-sign operator (‘#’), when used within a macro
definition, converts a macro parameter into a string constant. This operator may
be used only in a macro that has a specified argument or parameter list.

When the stringize operator immediately precedes the name of one of the macro
parameters, the parameter passed to the macro is enclosed within quotation
marks and is treated as a string literal. For example:

#define stringer(x) printf (#x "\n")

stringer (text)

This example results in the following actual output from the preprocessor:

printf ("text\n")

The expansion shows that the parameter is converted literally as if it were a
string. When the preprocessor stringizes the x parameter, the resulting line is:

printf ("text" "\n")

Because strings separated by whitespace are concatenated at compile time, these
two strings are combined into "text\n".

If the string passed as a parameter contains characters that should normally be
literalized or escaped (for example, " and \), the required \ character is
automatically added.

Keil Software — Cx51 Compiler User’s Guide 137

 4

Token-pasting operator
The token-pasting operator (##) within a macro definition combines two
arguments. It permits two separate tokens in the macro definition to be joined
into a single token.

If the name of a macro parameter used in the macro definition is immediately
preceded or followed by the token-pasting operator, the macro parameter and the
token-pasting operator are replaced by the value of the passed parameter. Text
that is adjacent to the token-pasting operator that is not the name of a macro
parameter is not affected. For example:

#define paster(n) printf ("token" #n " = %d", token##n)

paster (9);

This example results in the following actual output from the preprocessor:

printf ("token9 = %d", token9);

This example shows the concatenation of token##n into token9. Both the
stringize and the token-pasting operators are used in this example.

138 Chapter 4. Preprocessor

4

Predefined Macro Constants
The Cx51 compiler provides you with predefined constants to use in
preprocessor directives and C code for more portable programs. The following
table lists and describes each one.

Constant Description

_ _C51_ _ Version number of the C51 compiler (for example, 610 for version 6.10).
_ _CX51_ _ Version number of the CX51 compiler (for example, 610 for version 6.10).
_ _DATE_ _ Date when the compilation was started in ANSI format (month dd yyyy).

_ _DATE2_ _ Date when the compilation in short form (mm/dd/yy).

_ _FILE_ _ Name of the file being compiled.

_ _LINE_ _ Current line number in the file being compiled.

_ _MODEL_ _ Memory model selected (0 for SMALL, 1 for COMPACT, 2 for LARGE).
_ _TIME_ _ Time when the compilation was started.

__STDC_ _ Defined to 1 to indicate full conformance with the ANSI C Standard.

Keil Software — Cx51 Compiler User’s Guide 139

 5

Chapter 5. 8051 Derivatives
A number of 8051 devices provide enhanced performance while remaining
compatible with the 8051 core. These derivatives provide additional data
pointers, very fast math operations, extended or reduced instruction sets.

The Cx51 compiler directly supports the enhanced features of the following
8051-based microcontrollers:

� Analog Devices ADuC MicroConverter B2 series (2 data pointers and
extended stack space).

� Atmel 89x8252 and variants (2 data pointers).

� Dallas 80C320, 80C420, 80C520, 80C530, 80C550 an variants (2 data
pointers).

� Dallas 80C390, 5240 and variants (contigious address mode, extended stack
space, and arithmetic accelerator).

� Infineon C517, C517A, C509, and variants (high-speed 32-bit and 16-bit
binary arithmetic operations, 8 data pointers).

� Philips 8xC750, 8xC751, and 8xC752 (maximum code space of 2 KBytes, no
LCALL or LJMP instructions, 64 bytes internal, no external data memory).

� Philips 80C51MX architecture with extended instructions and memory space.

� Philips and AtmelWM support on several device variants 2 data pointers.

The Cx51 compiler provides you with support for these CPUs through the use of
special libraries, library routines, or additional directives that enable the Cx51
compiler to generate object code that takes advantage of the device
enhancements mentioned above. Refer to “Chapter 2. Compiling with the
Cx51” on page 17 for more information about these additional directives.

140 Chapter 5. 8051 Derivatives

5

Analog Devices MicroConverter B2 Series
The Analog Devices B2 series of MicroConverters provide 2 data pointers which
can be used for memory access. Using multiple data pointers can improve the
speed of library functions like memcpy, memmove, memcmp, strcpy, and
strcmp.

The MODAB2 directive instructs the the Cx51 compiler compiler to generate
code that uses both data pointers in your program.

The Cx51 compiler uses at least one data pointer in an interrupt function. If an
interrupt function is compiled using the MODAB2 directive, both data pointers
are saved on the stack. This happens even if the interrupt function uses only one
data pointer.

To conserve stack space, you may compile interrupt functions with the
NOMODAB2 directive. The Cx51compiler does not use the second data
pointer when this directive is used.

These devices offer also an extended stack space that is configured in startup file
START_AD.A51.

Keil Software — Cx51 Compiler User’s Guide 141

 5

Atmel 89x8252 and Variants
The Atmel 89x8252 and variants provide 2 data pointers which can be used for
memory access. Using multiple data pointers can improve the speed of library
functions like memcpy, memmove, memcmp, strcpy, and strcmp.

The MODA2 directive instructs the the Cx51 compiler compiler to generate
code that uses both data pointers in your program.

The Cx51 compiler uses at least one data pointer in an interrupt function. If an
interrupt function is compiled using the MODA2 directive, both data pointers
are saved on the stack. This happens even if the interrupt function uses only one
data pointer.

To conserve stack space, you may compile interrupt functions with the
NOMODA2 directive. The Cx51compiler does not use the second data pointer
when this directive is used.

142 Chapter 5. 8051 Derivatives

5

Dallas 80C320, 420, 520, and 530
The Dallas Semiconductor 80C320, 80C420, 80C520, and 80C530 provide 2
data pointers which may be used for memory access. Using multiple data
pointers can improve the speed of library functions like memcpy, memmove,
memcmp, strcpy, and strcmp.

The MODDP2 directive instructs the Cx51compiler to generate code that uses
both data pointers in your program.

The Cx51compiler uses at least one data pointer in an interrupt function. If an
interrupt function is compiled using the MODDP2 directive, both data pointers
are saved on the stack—even if the interrupt function uses only one data pointer.

To conserve stack space, you may compile interrupt functions with the
NOMODDP2 directive. The Cx51compiler does not use the second data
pointer when this directive is specified.

The DS80C420 provides auto toggle, decrement, and auto increment features for
the dual data pointers. The library \KEIL\C51\LIB\C51DS2A.LIB contains
accelerated versions of the memcpy, memmove, memcmp, strcpy, and strcmp
functions that use these features. Add this library to your project when you use
the dual DPTR feature on this device.

The DS80C550, DS80C390, and DS5240 provide auto toggle and decrement
features for the dual data pointers. The library \KEIL\C51\LIB\C51DS2T.LIB
contains accelerated versions of the memcpy, memmove, memcmp, strcpy,
and strcmp functions that use these features. Add this library to your project
when you use the dual DPTR feature on these devices.

Keil Software — Cx51 Compiler User’s Guide 143

 5

Dallas 80C390, 80C400, 5240, and
Variants
The Dallas Semiconductor 80C390, 80C400, 5240, and variants provide
additional CPU modes that are fully supported by the Keil compiler.

Contiguous mode allows you to create large programs that exceed the classic
8051’s 64K limit. The ROM(D512K) and ROM(D16M) directives instruct the
Cx51 compiler to generate code for the contiguous mode. The far memory type
is used to access variables and constants using 24-bit DPTR addressing mode (in
contiguous mode).

NOTE
The contiguous mode requires the extended LX51 linker/locater and the
extended AX51 macro assembler that are available only in the PK51
Professional Developers Kit.

In addition to the extended address space, the DS80C390, DS80C400, and
DS5240 provide auto toggle and decrement features for the dual data pointers.
The \KEIL\C51\LIB\C51DS2T.LIB library contains accelerated versions of the
memcpy, memmove, memcmp, strcpy, and strcmp functions that use these
features. For non-contiguous mode (classic 8051 mode) applications, you must
add this library to your project to use the dual DPTR of these devices. The
contiguous mode C library already contains the library routines for the auto
toggle and decrement features.

The DS80C390, DS80C400, and DS5240 offer an extended stack space that is
configured in the START390.A51 startup file.

144 Chapter 5. 8051 Derivatives

5

Arithmetic Accelerator
The Cx51 compiler uses the 32-bit and 16-bit arithmetic operations of the
DS80C390, DS80C400 and DS5240 to improve performance of a number of
math-intensive operations. C language programs execute considerably faster
when using either of these CPUs.

Use the following suggestions to help guarantee that only one thread of
execution uses the arithmetic processor:

� Use the MODDA directive to compile functions which are guaranteed to
execute only in the main program or functions used by one interrupt service
routine, but not both.

� Compile all remaining functions with the NOMODDA directive.

Keil Software — Cx51 Compiler User’s Guide 145

 5

Infineon C517, C509, 80C537, and
Variants
The Infineon C517, C517A, and C509 perform high-speed 32-bit and 16-bit
arithmetic operations which improve of many int, long, and float operations.

The C517, C517A, C509, and C515C provide 8 data pointers that may be used to
increase the speed of memory to memory operations.

The MOD517 directive instructs the Cx51compiler to generate code that utilizes
these advanced features.

Data Pointers
The Infineon C515C, C517, C517A, and C509 provide 8 data pointers which
may be used to speed-up memory access. Using multiple data pointers can
improve the execution of library functions such as: memcpy, memmove,
memcmp, strcpy, and strcmp. The 8 data pointers of the C515C, C517, C517
and C509 may also reduce the stack load of interrupt functions.

The Cx51 compiler uses only 2 of the 8 data pointers at a time. In order to keep
the stack load in the interrupt routines low, Cx51 switches to 2 unused data
pointers when switching the register bank. The contents of the register DPSEL
are saved on the stack and a new pair of data pointers is selected. Saving the
data pointers on the stack is no longer required.

If an interrupt routine does not switch to another register bank (for example, the
function is declared without the using attribute), the data pointers must be saved
on the stack (using 4 bytes of stack space). To keep the size of the stack as small
as possible, use the MOD517(NODP8) directive to compile the interrupt routine
and the functions it calls. This generates code for the interrupt using only one
data pointer and only 2 bytes of stack space.

146 Chapter 5. 8051 Derivatives

5

High-speed Arithmetic
The Cx51 compiler uses the 32-bit and 16-bit arithmetic operations of the C517,
C517A, and C509 to improve performance of a number of math-intensive
operations. C language programs execute considerably faster when using either
of these CPUs.

Use the following suggestions to help guarantee that only one thread of
execution uses the arithmetic processor:

� Use the MOD517 directive to compile functions which are guaranteed to
execute only in the main program or functions used by one interrupt service
routine, but not both.

� Compile all remaining functions with the MOD517(NOAU) directive.

Library Routines
The extra features of the C517, C517A, and C509 are used in several library
routines to enhance performance. These routines are listed below and are
described in detail in “Chapter 8. Library Reference” on page 209.

acos517
asin517
atan517
atof517
cos517
exp517

log10517
log517
printf517
scanf517
sin517
sprintf517

sqrt517
sscanf517
strtod517
tan517

Keil Software — Cx51 Compiler User’s Guide 147

 5

Philips 8xC750, 8xC751, and 8xC752
The Philips 8xC750, 8xC751, and 8xC752 derivatives support a maximum of
2 KBytes of internal program memory. The CPU cannot execute LCALL and
LJMP instructions. The following must be considered when using these
devices:

� A special library, 80C751.LIB, which does not use these instructions is
necessary for these devices.

� The Cx51 compiler must be set to avoid using LJMP and LCALL
instructions. This is accomplished using the ROM(SMALL) directive.

Note that the following restrictions apply when creating programs for the
8xC750, 8xC751, and 8xC752:

� Stream functions such as printf and putchar may not be used. These
functions are usually not necessary for this chip because it is only equipped
with a maximum of 2 KBytes and has no serial interface.

� Floating-point operations may not be used. Only operations using char,
unsigned char, int, unsigned int, long, unsigned long, and bit data types
are allowed.

� The Cx51 compiler must be invoked with the ROM(SMALL) directive. This
control statement instructs the C51 compiler to use only AJMP and ACALL
instructions.

� The library file 80C751.LIB must be included in the input module list of the
linker. For example:
BL51 myprog.obj, startup751.obj, 80C751.LIB

� A special startup module, START751.A51, is required. This file contains
startup code that is comparable to that found in STARTUP.A51, but contains
no LJMP or LCALL instructions. Refer to “Customization Files” on page
150 for more information.

148 Chapter 5. 8051 Derivatives

5

Philips 80C51MX Architecture
The Philips 80C51MX architecture provides an extended instruction set and
extended addressing modes to support up to 16MB memory space. The
universal pointer registers and the related instructions give you hardware support
for generic pointers. You may use the far memory type to place variables
anywhere in the extended memory space. Programming examples for the Philips
80C51MX architecture are found in the folder C51\EXAMPLES\PHILIPS 80C51MX.

The Philips 80C51MX architecture is supported with the extended CX51
compiler, LX51 linker/locater, and AX51 macro assembler. These additiaonl
components are available in the PK51 Professional Developers Kit.

Philips and Atmel WM Dual DPTR
Philips Semiconductors and Atmel Wireless and Microcontrollers provide
several compatible 8051 variants with dual data pointers. Using multiple data
pointers can improve the speed of library functions like memcpy, memmove,
memcmp, strcpy, and strcmp.

The MODP2 directive instructs the Cx51 compiler to generate code that uses
both data pointers in your program.

The Cx51 compiler uses at least one data pointer in an interrupt function. If an
interrupt function is compiled using the MODP2 directive, both data pointers are
saved on the stack - this happens even if the interrupt function uses only one data
pointer.

To conserve stack space, you may compile interrupt functions with the
NOMODP2 directive to prevent the Cx51 compiler from using the second data
pointer.

Keil Software — Cx51 Compiler User’s Guide 149

 6

Chapter 6. Advanced Programming
Techniques

This chapter describes advanced programming information that experienced
software engineers will find invaluable. Knowledge of most of these topics is
not necessary to successfully create an embedded 8051 target program using the
Cx51 compiler. However, the following sections provide insight into how many
non-standard procedures can be accomplished (for example, interfacing to
PL/M-51).

This chapter discusses the following topics:

� Files you may alter to customize the startup procedures

� Files you may alter to customize run-time execution of library routines

� The conventions the Cx51 compiler uses to name code and data segments

� How to interface Cx51 functions to assembly and PL/M-51 routines

� Data storage formats for the different Cx51 data types

� Different optimizing features of the Cx51 optimizing compiler

150 Chapter 6. Advanced Programming Techniques

6

Customization Files
The Cx51 compiler provides a number of source files you can modify to adapt
your target program to a specific hardware platform. These files contain:

� Code that is executed upon startup (STARTUP.A51)

� Code that is used to initialize static variables (INIT.A51)

� Code that is used to perform low-level stream I/O

� Code for memory allocation

The code contained in these files is already compiled or assembled and included
in the C library. When you link your program, the code from the library is
automatically included.

You may customize these files to adjust them to your requirements. If you are
working with the µVision2 IDE, we recommend that you copy the customization
file in your project folder to make modifications. The modified version of the
file can be added the same way as other source files to your project.

When you are working with command-line tools, you must include the object
files of the modified customization files in the linker command line. The
following example shows you how to include custom replacement files for
STARTUP.A51 and PUTCHAR.C:

Lx51 MYMODUL1.OBJ, MYMODUL2.OBJ, STARTUP.OBJ, PUTCHAR.OBJ

The file XBANKING.A51 allows you to change the configuration of the extended
far memory access rountines.

Keil Software — Cx51 Compiler User’s Guide 151

 6

STARTUP.A51
The STARTUP.A51 file contains the startup code for a Cx51 target program.
This source file is located in the LIB directory. Include a copy of this file in
each 8051 project that needs custom startup code.

The startup code is executed immediately upon reset of the target system and
optionally performs the following operations, in order:

� Clears internal data memory

� Clears external data memory

� Clears paged external data memory

� Initializes the small model reentrant stack and pointer

� Initializes the large model reentrant stack and pointer

� Initializes the compact model reentrant stack and pointer

� Initializes the 8051 hardware stack pointer

� Transfers control to the main C function

The STARTUP.A51 file provides you with assembly constants that you may
change to control the actions taken at startup. These are defined in the following
table.

Constant Name Description

IDATALEN Indicates the number of bytes of idata that are to be initialized to 0. The
default is 80h because most 8051 derivatives contain at least 128 bytes of
internal data memory. Use a value of 100h for the 8052 and other derivatives
that have 256 bytes of internal data memory.

XDATASTART Specifies the xdata address to start initializing to 0.

XDATALEN Indicates the number of bytes of xdata to be initialized to 0. The default is 0.

PDATASTART Specifies the pdata address to start initializing to 0.

PDATALEN Indicates the number of bytes of pdata to be initialized to 0. The default is 0.

IBPSTACK Indicates whether or not the small model reentrant stack pointer (?C_IBP)
should be initialized. A value of 1 causes this pointer to be initialized. A
value of 0 prevents initialization of this pointer. The default is 0.

IBPSTACKTOP Specifies the top start address of the small model reentrant stack area. The
default is 0xFF in idata memory.
The Cx51 compiler does not check to see if the stack area available satisfies
the requirements of the applications. It is your responsibility to perform such
a test.

152 Chapter 6. Advanced Programming Techniques

6

Constant Name Description

XBPSTACK Indicates whether or not the large model reentrant stack pointer (?C_XBP)
should be initialized. A value of 1 causes this pointer to be initialized. A
value of 0 prevents initialization of this pointer. The default is 0.

XBPSTACKTOP Specifies the top start address of the large model reentrant stack area. The
default is 0xFFFF in xdata memory.
The Cx51 compiler does not check to see if the available stack area satisfies
the requirements of the applications. It is your responsibility to perform such
a test.

PBPSTACK Indicates whether the compact model reentrant stack pointer (?C_PBP)
should be initialized. A value of 1 causes this pointer to be initialized. A
value of 0 prevents initialization of this pointer. The default is 0.

PBPSTACKTOP Specifies the top start address of the compact model reentrant stack area.
The default is 0xFF in pdata memory.
The Cx51 compiler does not check to see if the available stack area satisfies
the requirements of the applications. It is your responsibility to perform such
a test.

PPAGEENABLE Enables (a value of 1) or disables (a value of 0) the initialization of port 2 of
the 8051 device. The default is 0. The addressing of port 2 allows the
mapping of 256 byte variable memory in any arbitrary xdata page.

PPAGE Specifies the value to write to Port 2 of the 8051 for pdata memory access.
This value represents the xdata memory page to use for pdata. This is the
upper 8 bits of the absolute address range to use for pdata.
For example, if the pdata area begins at address 1000h (page 10h) in the
xdata memory, PPAGEENABLE should be set to 1, and PPAGE should be
set to 10h. The BL51 Linker/Locator must contain a value between 1000h
and 10FFh in the PDATA directive. For example:
BL51 <input modules> PDATA (1050H)

Neither BL51 nor Cx51 checks to see if the PDATA directive and the PPAGE
assembler constant are correctly specified. You must ensure that these
parameters contain suitable values.

There are numerous devices in the 8051 family that require special startup code.
The following list provides an overview of the various startup versions:

Startup File Description

STARTUP.A51 Standard startup code for classic 8051 devices.

START_AD.A51 Startup code for Analog Devices MicroConverters B2 series variants.

STARTLPC.A51 Startup code for Philips LPC variants.

START390.A51 Startup code for Dallas 80C390, 80C400, 5240 contigious mode.

START_MX.A51 Startup code for Philips 80C51MX architecture.

START751.A51 Startup code for Philips 80C75x variants.

Keil Software — Cx51 Compiler User’s Guide 153

 6

INIT.A51
The INIT.A51 file contains the initialization routine for variables that were
explicitly initialized. If your system is equipped with a watchdog timer, you can
integrate a watchdog refresh into the initialization code using the watchdog
macro. This macro needs to be defined only if the initialization takes longer than
the watchdog cycle time. For example, if you are using an Infineon C515, the
macro could be defined as follows:

WATCHDOG MACRO
SETB WDT
SETB SWDT
ENDM

The INIT_TNY.A51 file is a reduced version of INIT.A51 that may be used for
projects that do not contain XDATA memory. You should use this file when
you write code for single-chip devices, like the Philips LPC series, that contain
variable initializations in data space.

154 Chapter 6. Advanced Programming Techniques

6

XBANKING.A51
This file provides routines for far (HDATA) and const far (HCONST) memory
type support. The extended LX51 linker/locater manages the extended address
spaces HDATA and HCONST that are addressed with far and const far. The
Cx51 Compiler uses a 3-byte generic pointer to access these memory areas.
Variables defined with the far memory type are placed in the memory class
HDATA. Variables defined with const far get the memory class HCONST.
The LX51 linker/locater allows you to locate these memory classes in the
physical 16MB code or 16MB xdata spaces. To use far memory with the C51
Compiler for classic 8051 devices you must use the “VARBANKING” directive
described on page 84.

The memory types far and const far provide support for the large code/xdata
spaces of new 8051 devices. If the CPU you are using provides an extended
24-bit DPTR register, you may adapt the default version of the file
XBANKING.A51 and define the symbols listed in the following table.

Constant Name Description

?C?XPAGE1SFR SFR address of DPTR page register that contains DPTR bit 16-23.

?C?XPAGE1RST Reset value of the ?C?XPAGE1SFR to address the X:0 region. This setting
used by the C51 compiler when you are using the VARBANKING(1) directive.
With VARBANKING(1) the C51 compiler saves the ?C?XPAGE1SFR at the
beginning of interrupt functions and sets this register to the ?C?XPAGE1RST
value

The far memory type allows you to address special memory areas like EEPROM
space or strings in code banking ROM. Your application accesses these memory
areas as if they are a part of the standard 8051 memory space. Example
programs in the folder C51\EXAMPLES\FARMEMORY show how to use the C51
far memory type on classic 8051 devices. If an example that fulfills your
requirements is not provided, you may adapt the access routines listed in the
table below.

Access Routine Description

?C?CLDXPTR, ?C?CSTXPTR load/store a BYTE (char) in extended memory.

?C?ILDXPTR, ?C?ISTXPTR load/store a WORD (int) in extended memory.

?C?PLDXPTR, ?C?PSTXPTR load/store a 3-BYTE pointer in extended memory.

?C?LLDXPTR, ?C?LSTXPTR load/store a DWORD (long) in extended memory.

Keil Software — Cx51 Compiler User’s Guide 155

 6

Each access routine gets as a parameter the memory address in a 3-byte pointer
representation in the CPU registers R1/R2/R3. The register R3 holds the
memory type value. For classic 8051 devices, the Cx51 compiler uses the
following memory type values:

R3 Value Memory Type Memory Class Address Range

0x00 data / idata DATA / IDATA I:0x00-I:0xFF
0x01 xdata XDATA X:0x0000-X:0xFFFF

0x02-0x7F far HDATA X:0x010000-X:0x7E0000
0x80-0xFD far const HCONST C:0x800000-C:0xFD0000 (far const is

mapped into the banked memory areas)
0xFE pdata XDATA one 256-byte page in XDATA memory
0xFF code CODE / CONST C:0x0000-C:0xFFFF

The R3 values 0x00, 0x01, 0xFE and 0xFF are already handled within the run-
time library. Only the values 0x02 - 0xFE are passed to the XPTR access
routines described above. The AX51 macro assembler provides the MBYTE
operator that calculates the R3 value that needs to be passed to the XPTR access
function. Below is an AX51 Assembler example for using XPTR access
functions:

MOV R1,#LOW (variable) ; gives LSB address byte of variable
MOV R1,#HIGH (variable) ; gives MSB address byte of variable
MOV R1,#MBYTE (variable) ; gives memory type byte of variable
CALL ?C?CLDXPTR ; load BYTE variable into A

156 Chapter 6. Advanced Programming Techniques

6

Basic I/O Functions
The following files contain the source code for the low-level stream I/O routines.
When you use the µVision2 IDE, you can simply add the modified versions to
the project.

C Source File Description

PUTCHAR.C Used by all stream routines that output characters. You may adapt this
routine to your individual hardware (for example, LCD or LED displays).
The default version outputs characters via the serial interface. An
XON/XOFF protocol is used for flow control. Linefeed characters (‘\n’) are
converted into carriage return/linefeed sequences (‘\r\n’).

GETKEY.C Used by all stream routines that input characters. You may adapt this routine
to your individual hardware (for example, for matrix keyboards).
The default version reads a character via the serial interface. No data
conversions are performed.

Memory Allocation Functions
The following files contain the source code for the memory allocation routines.

C Source File Description

CALLOC.C Allocates memory for an array from the memory pool.

FREE.C Returns a previously allocated memory block to the memory pool.

INIT_MEM.C Specifies the location and size of a memory pool from which memory may be
allocated using the malloc, calloc, and realloc functions.

MALLOC.C Allocates memory from the memory pool.

REALLOC.C Resizes a previously allocated memory block.

Keil Software — Cx51 Compiler User’s Guide 157

 6

Optimizer
The Cx51 compiler is an optimizing compiler. This means that the compiler
takes certain steps to ensure that the code generated and output to the object file
is the most efficient (smallest and/or fastest) code possible. The compiler
analyzes the generated code to produce more efficient instruction sequences.
This ensures that your Cx51 compiler program runs as quickly as possible.

The Cx51 compiler provides several different levels of optimizing. Refer to
“OPTIMIZE” on page 63 for detailed information.

General Optimizations

Optimization Description

Constant Folding Several constant values occurring in an expression or
address calculation are combined as a constant.

Jump Optimizing Jumps are inverted or extended to the final target address
when the program efficiency is thereby increased.

Dead Code Elimination Code which cannot be reached (dead code) is removed from
the program.

Register Variables Automatic variables and function arguments are located in
registers when possible. Reservation of data memory for
these variables is omitted.

Parameter Passing Via Registers A maximum of three function arguments can be passed in
registers.

Global Common Subexpression
Elimination

Identical subexpressions or address calculations that occur
multiple times in a function are recognized and calculated
only once when possible.

Reuse of Common Entry Code When there are multiple calls to a single function, some of
the setup code can be reused, thereby reducing program
size.

Common Block Subroutines Detects recurring instruction sequences and converts them
into subroutines. The compiler even rearranges code to
obtain larger recurring sequences.

158 Chapter 6. Advanced Programming Techniques

6

8051-Specific Optimizations

Optimization Description

Peephole Optimization Complex operations are replaced by simplified operations when
memory space or execution time can be saved as a result.

Extended Access Optimizing Constants and variables are directly included in operations.

Data Overlaying Data and bit segments of functions are identified as
OVERLAYABLE and are overlaid with other data and bit
segments by the BL51 Linker/Locator.

Case/Switch Optimizing Optimize switch case statements by using a jump table or string
of jumps.

Options for Code Generation

Optimization Description

OPTIMIZE(SIZE) Common C operations are replaced by subprograms. Program code
is thereby reduced.

NOAREGS The Cx51 compiler no longer uses absolute register access. Program
code is independent of the register bank.

NOREGPARMS Parameter passing is always performed in local data segments. The
program code is compatible to earlier versions of Cx51.

Keil Software — Cx51 Compiler User’s Guide 159

 6

Segment Naming Conventions
Objects generated by the Cx51 compiler (program code, program data, and
constant data) are stored in segments which are units of code or data memory. A
segment may be relocatable or may be absolute. Each relocatable segment has a
type and a name. This section describes the conventions used by the Cx51
comiler for naming these segments.

Segment names include a module_name which is the name of the source file in
which the object is declared. In order to accommodate a wide variety of existing
software and hardware tools, all segment names are converted and stored in
uppercase.

Each segment name has a prefix that corresponds to the memory type used for
the segment. The prefix is enclosed in question marks (?). The following is a
list of the standard segment name prefixes:

Segment Prefix Memory Type Description

?PR? program Executable program code

?CO? code Constant data in program memory

?BI? bit Bit data in internal data memory

?BA? bdata Bit-addressable data in internal data memory

?DT? data Internal data memory

?FD? far Far memory (RAM space)

?FC? const far Far memory (constant ROM space)

?ID? idata Indirectly-addressable internal data memory

?PD? pdata Paged data in external data memory

?XD? xdata Xdata memory (RAM space)

?XC? const xdata Xdata memory (constant ROM space)

160 Chapter 6. Advanced Programming Techniques

6

Data Objects
Data objects are the variables and constants you declare in your C programs.
The Cx51 compiler generates a separate segment for each memory type for
which a variable is declared. The following table lists the segment names
generated for different variable data objects.

Segment Name Description

?BA?module_name Bit-addressable data objects

?BI?module_name Bit objects

?CO?module_name Constants (strings and initialized variables)

?DT?module_name Objects declared in data

?FC?module_name Objects declared in const far (requires OMF2 directive)

?FD?module_name Objects declared in far (requires OMF2 directive)

?ID?module_name Objects declared in idata

?PD?module_name Objects declared in pdata

?XC?module_name Objects declared in const xdata (requires OMF2 directive)

?XD?module_name Objects declared in xdata

Keil Software — Cx51 Compiler User’s Guide 161

 6

Program Objects
Program objects include the code generated for C program functions by the
Cx51 compiler. Each function in a source module is assigned a separate code
segment using the ?PR?function_name?module_name naming convention. For
example, the function error_check in the file SAMPLE.C would result in a
segment name of ?PR?ERROR_CHECK?SAMPLE.

Segments are also created for local variables that are declared within the body of
a function. These segment names follow the above conventions and have a
different prefix depending upon the memory area in which the local variables are
stored.

Function arguments were historically passed using fixed memory locations. This
is still true for routines written in PL/M-51. However, Cx51 can pass up to 3
function arguments in registers. Other arguments are passed using the traditional
fixed memory areas. Memory space is reserved for all function arguments
regardless of whether or not some of these arguments may be passed in registers.
The parameter areas must be publicly known to any calling module. So, they are
publicly defined using the following segment names:

?function_name?BYTE
?function_name?BIT

For example, if func1 is a function that accepts both bit arguments as well as
arguments of other data types, the bit arguments are passed starting at
?FUNC1?BIT, and all other parameters are passed starting at ?FUNC1?BYTE.
Refer to “Interfacing C Programs to Assembler” on page 163 for examples of the
function argument segments.

Functions that have parameters, local variables, or bit variables contain all
additional segments for these variables. These segments can be overlaid by the
BL51 Linker/Locator.

162 Chapter 6. Advanced Programming Techniques

6

They are created as follows based on the memory model used.

Small model segment naming conventions

Information Segment Type Segment Name

Program code code ?PR?function_name?module_name
Local variables data ?DT?function_name?module_name
Local bit variables bit ?BI?function_name?module_name

Compact model segment naming conventions

Information Segment Type Segment Name

Program code code ?PR?function_name?module_name
Local variables pdata ?PD?function_name?module_name
Local bit variables bit ?BI?function_name?module_name

Large model segment naming conventions

Information Segment Type Segment Name

Program code code ?PR?function_name?module_name
Local variables xdata ?XD?function_name?module_name
Local bit variables bit ?BI?function_name?module_name

The names for functions with register parameters and reentrant attributes are
modified slightly to avoid run-time errors. The following table lists deviations
from the standard segment names.

Declaration Symbol Description

void func (void) … FUNC Names of functions that have no arguments or
whose arguments are not passed in registers are
transferred to the object file without any changes.
The function name is converted to uppercase.

void func1 (char) … _FUNC1 For functions with arguments passed in registers,
the underscore character (‘_’) is prefixed to the
function name. This identifies those functions that
transfer arguments in CPU registers.

void func2 (void) reentrant
…

?FUNC2 For functions that are reentrant, the string “?” is
prefixed to the function name. This is used to
identify reentrant functions.

Keil Software — Cx51 Compiler User’s Guide 163

 6

Interfacing C Programs to Assembler
You can easily interface your programs to routines written in 8051 Assembler.
The A51 Assembler is an 8051 macro assembler that emits object modules in
OMF-51 format. By observing a few programming rules, you can call assembly
routines from C and vice versa. Public variables declared in the assembly
module are available to your C programs.

There are several reasons to call an assembly routine from your C program.

� You may have assembly code already written that you wish to use

� You may need to improve the speed of a particular function

� You may want to manipulate SFRs or memory-mapped I/O devices directly
from assembly

This section describes how to write assembly routines that can be directly
interfaced to C programs.

For an assembly routine to be called from C, it must be aware of the parameter
passing and return value conventions used in C functions. For all practical
purposes, it must appear to be a C function.

Function Parameters
By default, C functions pass up to three parameters in registers. The remaining
parameters are passed in fixed memory locations. You may use the directive
NOREGPARMS to disable parameter passing in registers. Parameters are
passed in fixed memory locations if parameter passing in registers is disabled or
if there are too many parameters to fit in registers. Functions that pass
parameters in registers are flagged by the Cx51 compiler with an underscore
character (‘_’) prefixed to the function name at code generation time. Functions
that pass parameters only in fixed memory locations are not prefixed with an
underscore. Refer to “Using the SRC Directive” on page 166 for an example.

164 Chapter 6. Advanced Programming Techniques

6

Parameter Passing in Registers
C functions may pass parameters in registers and fixed memory locations. A
maximum of 3 parameters may be passed in registers. All other parameters are
passed using fixed memory locations. The following tables define what registers
are used for passing parameters.

Arg Number char, 1-byte ptr int, 2-byte ptr long, float generic ptr

1 R7 R6 & R7
(MSB in R6,
LSB in R7)

R4—R7 R1—R3
(Mem type in R3,

MSB in R2,
LSB in R1)

2 R5 R4 & R5
(MSB in R4,
LSB in R5)

R4—R7 R1—R3
(Mem type in R3,

MSB in R2,
LSB in R1)

3 R3 R2 & R3
(MSB in R2,
LSB in R3)

 R1—R3
(Mem type in R3,

MSB in R2,
LSB in R1)

The following examples clarify how registers are selected for parameter passing.

Declaration Description

func1 (
int a)

The first and only argument, a, is passed in registers R6 and R7.

func2 (
int b,
int c,
int *d)

The first argument, b, is passed in registers R6 and R7. The second
argument, c, is passed in registers R4 and R5. The third argument, d, is
passed in registers R1, R2, and R3.

func3 (
long e,
long f)

The first argument, e, is passed in registers R4, R5, R6, and R7. The
second argument, f, cannot be located in registers since those available for
a second parameter with a type of long are already used by the first argument.
This parameter is passed using fixed memory locations.

func4 (
float g,
char h)

The first argument, g, passed in registers R4, R5, R6, and R7. The second
parameter, h, cannot be passed in registers and is passed in fixed memory
locations.

Keil Software — Cx51 Compiler User’s Guide 165

 6

Parameter Passing in Fixed Memory Locations
Parameters passed to assembly routines in fixed memory locations use segments
named ?function_name?BYTE and ?function_name?BIT to hold the parameter
values passed to the function function_name. Bit parameters are copied into the
?function_name?BIT segment prior to calling the function. All other parameters
are copied into the ?function_name?BYTE segment. All parameters are assigned
space in these segments even if they are passed using registers. Parameters are
stored in the order in which they are declared in each respective segment.

The fixed memory locations used for parameter passing may be in internal data
memory or external data memory depending upon the memory model used. The
SMALL memory model is the most efficient and uses internal data memory for
parameter segments. The COMPACT and LARGE models use external data
memory for the parameter passing segments.

Function Return Values
Function return values are always passed using CPU registers. The following
table lists the possible return types and the registers used for each.

Return Type Register Description

Bit Carry Flag Single bit returned in the carry flag

char / unsigned char,
1-byte pointer

R7 Single byte typed returned in R7

int / unsigned int,
2-byte ptr

R6 & R7 MSB in R6, LSB in R7

long / unsigned long R4-R7 MSB in R4, LSB in R7

Float R4-R7 32-Bit IEEE format

generic pointer R1-R3 Memory type in R3, MSB R2, LSB R1

166 Chapter 6. Advanced Programming Techniques

6

Using the SRC Directive
The Cx51 compiler can create assembly source files you assemble with the A51
Assembler. These files may be useful when you want to determine the argument
passing conventions between C and assembly.

To create an assembly source file, you must use the SRC directive with the Cx51
compiler. For example:

#pragma SRC
#pragma SMALL

unsigned int asmfunc1 (
unsigned int arg)

{
return (1 + arg);
}

generates the following assembly output file when compiled using the SRC
directive.

; ASM1.SRC generated from: ASM1.C

NAME ASM1

?PR?_asmfunc1?ASM1 SEGMENT CODE
PUBLIC _asmfunc1
; #pragma SRC
; #pragma SMALL
;
; unsigned int asmfunc1 (

RSEG ?PR?_asmfunc1?ASM1
USING 0

_asmfunc1:
;---- Variable 'arg?00' assigned to Register 'R6/R7' ----

; SOURCE LINE # 4
; SOURCE LINE # 6

; return (1 + arg);
; SOURCE LINE # 7

MOV A,R7
ADD A,#01H
MOV R7,A
CLR A
ADDC A,R6
MOV R6,A

; }
; SOURCE LINE # 8

?C0001:
RET

; END OF _asmfunc1

END

Keil Software — Cx51 Compiler User’s Guide 167

 6

In this example, note that the function name, asmfunc1, is prefixed with an
underscore character signifying that arguments are passed in registers. The arg
parameter is passed using R6 and R7.

The following example shows the assembly source generated for the same
function; however, register parameter passing has been disabled using the
NOREGPARMS directive.

; ASM2.SRC generated from: ASM2.C

NAME ASM2

?PR?asmfunc1?ASM2 SEGMENT CODE
?DT?asmfunc1?ASM2 SEGMENT DATA
PUBLIC ?asmfunc1?BYTE
PUBLIC asmfunc1

RSEG ?DT?asmfunc1?ASM2
?asmfunc1?BYTE:
arg?00: DS 2
; #pragma SRC
; #pragma SMALL
; #pragma NOREGPARMS
;
; unsigned int asmfunc1 (

RSEG ?PR?asmfunc1?ASM2
USING 0

asmfunc1:
; SOURCE LINE # 5
; SOURCE LINE # 7

; return (1 + arg);
; SOURCE LINE # 8

MOV A,arg?00+01H
ADD A,#01H
MOV R7,A
CLR A
ADDC A,arg?00
MOV R6,A

; }
; SOURCE LINE # 9

?C0001:
RET

; END OF asmfunc1

END

Note in this example that the function name, asmfunc1, is not prefixed with an
underscore character and that the arg parameter is passed in the
?asmfunc1?BYTE segment.

168 Chapter 6. Advanced Programming Techniques

6

Register Usage
Assembler functions can change all register contents in the current selected
register bank as well as the contents of the registers ACC, B, DPTR, and PSW.
When invoking a C function from assembly, assume that these registers may be
destroyed by the C function that is called.

Overlaying Segments
If the overlay process is executed during program linking and locating, it is
important that each assembler subroutine have a unique program segment. This
is necessary so that during the overlay process the references between the
functions are calculated using the references of the individual segments. The
data areas of the assembler subprograms may be included in the overlay analysis
when the following points are observed:

� All segment names must be created using the Cx51 compiler segment naming
conventions.

� Each assembler function with local variables must be assigned its own data
segment. This data segment may be accessed by other functions only for
passing parameters. Parameters must be passed in order.

Example Routines
The following program examples show you how to pass parameters to and from
assembly routines. The following C functions are used in all of these examples:

int function (
int v_a, /* passed in R6 & R7 */
char v_b, /* passed in R5 */
bit v_c, /* passed in fixed memory location */
long v_d, /* passed in fixed memory location */
bit v_e); /* passed in fixed memory location */

Keil Software — Cx51 Compiler User’s Guide 169

 6

Small Model Example
In the small model, parameters passed in fixed memory locations are stored in
internal data memory. The parameter passing segment for variables is located in
the data area.

The following are two assembly code examples. The first shows how the
example function is called from assembly. The second example displays the
assembly code for the example function.

Calling a C function from assembly.
.
.
.
EXTRN CODE (_function) ; Ext declarations for function names
EXTRN DATA (?_function?BYTE) ; Seg for local variables
EXTRN BIT (?_function?BIT) ; Seg for local bit variables
.
.
.

MOV R6,#HIGH intval ; int a
MOV R7,#LOW intval ; int a
MOV R7,#charconst ; char b
SETB ?_function?BIT+0 ; bit c
MOV ?_function?BYTE+3,longval+0 ; long d
MOV ?_function?BYTE+4,longval+1 ; long d
MOV ?_function?BYTE+5,longval+2 ; long d
MOV ?_function?BYTE+6,longval+3 ; long d
MOV C,bitvalue
MOV ?_function?BIT+1,C ; bit e
LCALL _function
MOV intresult+0,R6 ; store int
MOV intresult+1,R7 ; retval

.

.

.

170 Chapter 6. Advanced Programming Techniques

6

Asssembly code for the example function:
NAME MODULE ; Names of the program module
?PR?FUNCTION?MODULE SEGMENT CODE ; Seg for prg code in 'function'
?DT?FUNCTION?MODULE SEGMENT DATA OVERLAYABLE

; Seg for local vars in 'function'
?BI?FUNCTION?MODULE SEGMENT BIT OVERLAYABLE

; Seg for local bit vars in 'function'

PUBLIC _function, ?_function?BYTE, ?_function?BIT
; Public symbols for 'C' function call

RSEG ?PD?FUNCTION?MODULE ; Segment for local variables
?_function?BYTE: ; Start of parameter passing segment
v_a: DS 2 ; int variable: v_a
v_b: DS 1 ; char variable: v_b
v_d: DS 4 ; long variable: v_d
.
. ; Additional local variables
.

RSEG ?BI?FUNCTION?MODULE ; Segment for local bit variables
?_function?BIT: ; Start of parameter passing segment
v_c: DBIT 1 ; bit variable: v_c
v_e: DBIT 1 ; bit variable: v_e
.
. ; Additional local bit variables
.

RSEG ?PR?FUNCTION?MODULE ; Program segment
_function: MOV v_a,R6 ; A function prolog and epilog is

MOV v_a+1,R7 ; not necessary. All variables can
MOV v_b,R5 ; immediately be accessed.

.

.

.
MOV R6,#HIGH retval ; Return value
MOV R7,#LOW retval ; int constant
RET ; Return

Keil Software — Cx51 Compiler User’s Guide 171

 6

Compact Model Example
In the compact model, parameters passed in fixed memory locations are stored in
external data memory. The parameter passing segment for variables is located in
the pdata area.

The following are two assembly code examples. The first shows you how the
example function is called from assembly. The second example displays the
assembly code for the example function.

Calling a C function from assembly.
EXTRN CODE (_function) ; Ext declarations for function names
EXTRN XDATA (?_function?BYTE) ; Seg for local variables
EXTRN BIT (?_function?BIT) ; Seg for local bit variables
.
.
.

MOV R6,#HIGH intval ; int a
MOV R7,#LOW intval ; int a
MOV R5,#charconst ; char b
SETB ?_function?BIT+0 ; bit c
MOV R0,#?_function?BYTE+3 ; Addr of 'v_d' in the passing area
MOV A,longval+0 ; long d
MOVX @R0,A ; Store parameter byte
INC R0 ; Inc parameter passing address
MOV A,longval+1 ; long d
MOVX @R0,A ; Store parameter byte
INC R0 ; Inc parameter passing address
MOV A,longval+2 ; long d
MOVX @R0,A ; Store parameter byte
INC R0 ; Inc parameter passing address
MOV A,longval+3 ; long d
MOVX @R0,A ; Store parameter byte
MOV C,bitvalue
MOV ?_function?BIT+1,C ; bit e
LCALL _function
MOV intresult+0,R6 ; Store int
MOV intresult+1,R7 ; Retval

.

.

.

172 Chapter 6. Advanced Programming Techniques

6

Asssembly code for the example function:
NAME MODULE ; Name of the program module
?PR?FUNCTION?MODULE SEGMENT CODE ; Seg for program code in 'function';
?PD?FUNCTION?MODULE SEGMENT XDATA OVERLAYABLE IPAGE

; Seg for local vars in 'function'
?BI?FUNCTION?MODULE SEGMENT BIT OVERLAYABLE

; Seg for local bit vars in
'function'

PUBLIC _function, ?_function?BYTE, ?_function?BIT
; Public symbols for C function call

RSEG ?PD?FUNCTION?MODULE ; Segment for local variables
?_function?BYTE: ; Start of the parameter passing seg
v_a: DS 2 ; int variable: v_a
v_b: DS 1 ; char variable: v_b
v_d: DS 4 ; long variable: v_d
.
. ; Additional local variables
.

RSEG ?BI?FUNCTION?MODULE ; Segment for local bit variables
?_function?BIT: ; Start of the parameter passing seg
v_c: DBIT 1 ; bit variable: v_c
v_e: DBIT 1 ; bit variable: v_e
.
. ; Additional local bit variables
.

RSEG ?PR?FUNCTION?MODULE ; Program segment
_function: MOV R0,#?_function?BYTE+0 ; Special function prolog

MOV A,R6 ; and epilog is not
MOVX @R0,A ; necessary. All
INC R0 ; vars can immediately
MOV A,R7 ; be accessed
MOVX @R0,A
INC R0
MOV A,R5
MOVX @R0,A

.

.

.
MOV R6,#HIGH retval ; Return value
MOV R7,#LOW retval ; int constant
RET ; Return

Keil Software — Cx51 Compiler User’s Guide 173

 6

Large Model Example
In the large model, parameters passed in fixed memory locations are stored in
external data memory. The parameter passing segment for variables is located in
the xdata area.

The following are two assembly code examples. The first shows you how the
example function is called from assembly. The second example displays the
assembly code for the example function.

Calling a C function from assembly.
EXTRN CODE (_function) ; Ext declarations for function names
EXTRN XDATA (?_function?BYTE) ; Start of transfer for local vars
EXTRN BIT (?_function?BIT) ; Start of transfer for local bit vars
.
.
.

MOV R6,#HIGH intval ; int a
MOV R7,#LOW intval ; int a
MOV R5,#charconst ; char b
SETB ?_function?BIT+0 ; bit c
MOV R0,#?_function?BYTE+3 ; Address of 'v_d' in the passing area
MOV A,longval+0 ; long d
MOVX @DPTR,A ; Store parameter byte
INC DPTR ; Increment parameter passing address
MOV A,longval+1 ; long d
MOVX @DPTR,A ; Store parameter byte
INC DPTR ; Increment parameter passing address
MOV A,longval+2 ; long d
MOVX @DPTR,A ; Store parameter byte
INC DPTR ; Increment parameter passing address
MOV A,longval+3 ; long d
MOVX @DPTR,A ; Store parameter byte
MOV C,bitvalue
MOV ?_function?BIT+1,C ; bit e
LCALL _function
MOV intresult+0,R6 ; Store int
MOV intresult+1,R7 ; Retval

.

.

.

174 Chapter 6. Advanced Programming Techniques

6

Asssembly code for the example function:
NAME MODULE ; Name of the program module
?PR?FUNCTION?MODULE SEGMENT CODE ; Seg for program code in 'functions'
?XD?FUNCTION?MODULE SEGMENT XDATA OVERLAYABLE

; Seg for local vars in 'function'
?BI?FUNCTION?MODULE SEGMENT BIT OVERLAYABLE

; Seg for local bit vars in 'function'

PUBLIC _function, ?_function?BYTE, ?_function?BIT
; Public symbols for C function call

RSEG ?XD?FUNCTION?MODULE ; Segment for local variables
?_function?BYTE: ; Start of the parameter passing seg
v_a: DS 2 ; int variable: v_a
v_b: DS 1 ; char variable: v_b
v_d: DS 4 ; long variable: v_l
.
.; Additional local variables from 'function'
.

RSEG ?BI?FUNCTION?MODULE ; Segment for local bit variables
?_function?BIT: ; Start of the parameter passing seg
v_c: DBIT 1 ; bit variable: v_c
v_e: DBIT 1 ; bit variable: v_e
.
. ; Additional local bit variables
.

RSEG ?PR?FUNCTION?MODULE ; Program segment
_function: MOV DPTR,#?_function?BYTE+0 ; Special function prolog

MOV A,R6 ; and epilog is not
MOVX @DPTR,A ; necessary. All vars
INC R0 ; can immediately be
MOV A,R7 ; accessed.
MOVX @DPTR,A
INC R0
MOV A,R5
MOVX @DPTR,A

.

.

.
MOV R6,#HIGH retval ; Return value
MOV R7,#LOW retval ; int constant
RET ; Return

Keil Software — Cx51 Compiler User’s Guide 175

 6

Interfacing C Programs to PL/M-51
Intel’s PL/M-51 is a popular programming language that is similar to C in many
ways. You can easily interface the Cx51 compiler to routines written in
PL/M-51.

� You can access PL/M-51 functions from C by declaring them with the alien
function type specifier.

� Public variables declared in the PL/M-51 module are available to your C
programs.

� The PL/M-51 compiler generates object files in the OMF-51 format.

The Cx51 compiler can generate code using the PL/M-51 parameter passing
conventions. The alien function type specifier is used to declare public or
external functions that are compatible with PL/M-51 in any memory model. For
example:

extern alien char plm_func (int, char);

alien unsigned int c_func (unsigned char x, unsigned char y) {
return (x * y);

}

Parameters and return values of PL/M-51 functions may be any of the following
types: bit, char, unsigned char, int, and unsigned int. Other types, including
long, float, and all types of pointers, can be declared in C functions with the
alien type specifier. However, use these types with care because PL/M-51 does
not directly support 32-bit binary integers or floating-point numbers.

NOTE
PL/M-51 does not support variable-length argument lists. Therefore, functions
declared using the alien type specifier must have a fixed number of arguments.
The ellipsis notation used for variable-length argument lists is not allowed for
alien functions and causes the Cx51 compiler to generate an error message.
For example:

extern alien unsigned int plm_i (char, int, ...);

*** ERROR IN LINE 1 OF A.C: 'plm_i': Var_parms on alien function

176 Chapter 6. Advanced Programming Techniques

6

Data Storage Formats
This section describes the storage formats of the data types available in the Cx51
compiler. The Cx51 compiler offers a number of basic data types to use in your
C programs. The following table lists these data types along with their size
requirements and value ranges.

Data Type Bits Bytes Value Range

Bit 1 — 0 to 1

signed char 8 1 -128 to +127

unsigned char 8 1 0 to 255

Enum 8 / 16 1 or 2 -128 to +127 or -32768 to +32767

signed short 16 2 -32768 to +32767

unsigned short 16 2 0 to 65535

signed int 16 2 -32768 to +32767

unsigned int 16 2 0 to 65535

signed long 32 4 -2147483648 to 2147483647

unsigned long 32 4 0 to 4294967295

Float 32 4 ±1.175494E-38 to ±3.402823E+38

data *, idata *, pdata * 8 1 0x00 to 0xFF

code*, xdata * 16 2 0x0000 to 0xFFFF

generic pointer 24 3 Memory type (1 byte); Offset (2 bytes) 0 to 0xFFFF

Other data types, like structures and unions, may contain scalars from this table.
All elements of these data types are allocated sequentially and are byte-aligned
due to the 8-bit architecture of the 8051 family.

Bit Variables
Scalars of type bit are stored using a single bit. Pointers to bits and arrays of
bits are not allowed. Bit objects are always located in the bit-addressable
internal memory of the 8051 CPU. The BL51 Linker/Locator overlays bit
objects if possible.

Keil Software — Cx51 Compiler User’s Guide 177

 6

Signed and Unsigned Characters,
Pointers to data, idata, and pdata
Scalars of type char are stored in a single byte (8 bits). Memory-specific
pointers that reference data, idata, and pdata are also stored using a single byte
(8 bits). If an enum can be represented with an 8 bit value, the enum is also
stored in a single byte.

Signed and Unsigned Integers,
Enumerations, Pointers to xdata and code
Scalars of type int, short, and enum, and memory-specific pointers that
reference xdata or code are all stored using two bytes (16 bits). The high-order
byte is stored first, followed by the low-order byte. For example, an integer
value of 0x1234 is stored in memory as follows:

Address +0 +1

Contents 0x12 0x34

Signed and Unsigned Long Integers
Scalars of type long are stored using four bytes (32 bits). The bytes are stored in
high to low order. For example, the long value 0x12345678 is stored in memory
as follows:

Address +0 +1 +2 +3

Contents 0x12 0x34 0x56 0x78

178 Chapter 6. Advanced Programming Techniques

6

Generic and Far Pointers
Generic pointers have no declared explicit memory type. They may point to any
memory area on the 8051. These pointers are stored using three bytes (24 bits).
The first byte contains a value that indicates the memory area or memory type.
The remaining two bytes contain the address offset with the high-order byte first.
The following memory format is used:

Address +0 +1 +2

Contents Memory Type Offset; High-Order Byte Offset; Low-Order Byte

Depending on the compiler version that you are using, the memory type byte has
the following values:

Memory Type idata / data / bdata Xdata pdata code

C51 Compiler (8051 devices) 0x00 0x01 0xFE 0xFF
CX51 Compiler (Philips 80C51MX) 0x7F 0x00 0x00 0x80

The Philips 80C51MX architecture supports new CPU instructions that operate on a
universal pointer. Universal pointers are identical with Cx51 generic pointers.

The format of the generic pointers is also used for pointers with the memory type
far. Therefore, any other memory type values are used to address far memory
space.

The following example shows the memory storage of a generic pointer (on the
C51 compiler) that references address 0x1234 in the xdata memory area.

Address +0 +1 +2

Contents 0x01 0x12 0x34

Keil Software — Cx51 Compiler User’s Guide 179

 6

Floating-point Numbers
Scalars of type float are stored using four bytes (32-bits). The format used
follows the IEEE-754 standard.

A floating-point number is expressed as the product of two parts: the mantissa
and a power of two. For example:

±mantissa × 2exponent

The mantissa represents the actual binary digits of the floating-point number.

The power of two is represented by the exponent. The stored form of the
exponent is an 8-bit value from 0 to 255. The actual value of the exponent is
calculated by subtracting 127 from the stored value (0 to 255) giving a range of –
127 to +128.

The mantissa is a 24-bit value (representing about seven decimal digits) whose
most significant bit (MSB) is always 1 and is, therefore, not stored. There is also
a sign bit that indicates whether the floating-point number is positive or negative.

Floating-point numbers are stored on byte boundaries in the following format:

Address +0 +1 +2 +3

Contents SEEE EEEE EMMM MMMM MMMM MMMM MMMM MMMM

where:

S represents the sign bit where 1 is negative and 0 is positive.

E is the exponent with an offset of 127.

M is the 24-bit mantissa (stored in 23 bits).

Zero is a special value denoted with an exponent field of 0 and a mantissa of 0.

180 Chapter 6. Advanced Programming Techniques

6

The floating-point number -12.5 is stored as a hexadecimal value of
0xC1480000. In memory, this value appears as follows:

Address +0 +1 +2 +3

Contents 0xC1 0x48 0x00 0x00

It is fairly simple to convert floating-point numbers to and from their
hexadecimal storage equivalents. The following example demonstrates how this
is done for the value -12.5 shown above.

The floating-point storage representation is not an intuitive format. To convert
this to a floating-point number, the bits must be separated as specified in the
floating-point number storage format table shown above. For example:

Address +0 +1 +2 +3

Format SEEEEEEE EMMMMMMM MMMMMMMM MMMMMMMM

Binary 11000001 01001000 00000000 00000000

Hex 00 00 48 C1

From this illustration, you can determine the following information:

� The sign bit is 1, indicating a negative number.

� The exponent value is 10000010 binary or 130 decimal. Subtracting 127
from 130 leaves 3, which is the actual exponent.

� The mantissa appears as the following binary number:
10010000000000000000000

Keil Software — Cx51 Compiler User’s Guide 181

 6

There is an understood binary point at the left of the mantissa that is always
preceded by a 1. This digit is omitted from the stored form of the floating-point
number. Adding 1 and the binary point to the beginning of the mantissa gives
the following value:

1.10010000000000000000000

Next, adjust the mantissa for the exponent. A negative exponent moves the
decimal point to the left. A positive exponent moves the decimal point to the
right. Because the exponent is three, the mantissa is adjusted as follows:

1100.10000000000000000000

The result is a binary floating-point number. Binary digits to the left of the
decimal point represent the power of two corresponding to their position. For
example, 1100 represents (1 × 23) + (1 × 22) + (0 × 21) + (0 × 20), which is 12.

Binary digits to the right of the decimal point also represent the power of two
corresponding to their position. However, the powers are negative. For
example, .100… represents (1 × 2-1) + (0 × 2-2) + (0 × 2-3) + … which equals
.5.

The sum of these values is 12.5. Because the sign bit was set, this number
should be negative. So, the hexadecimal value 0xC1480000 is -12.5.

182 Chapter 6. Advanced Programming Techniques

6

Floating-point Errors
The 8051 does not contain an interrupt vector to trap floating-point errors;
therefore, your software must appropriately respond to these error conditions.

In addition to the normal floating-point values, a floating-point number may
contain a binary error value. These values are defined as a part of the IEEE
standard and are used whenever an error occurs during normal processing of
floating-point operations. Your code should check for possible arithmetic errors
at the end of each floating-point operation.

Name Value Meaning

NaN 0xFFFFFFF Not a number

+INF 0x7F80000 Positive infinity (positive overflow)

-INF 0xFF80000 Negative infinity (negative overflow)

NOTE
The Cx51 library function _chkfloat_ lets you quickly check floating-point
status.

You can use the following union to store floating-point values.

union f {
float f; /* Floating-point value */
unsigned long ul; /* Unsigned long value */

};

This union contains a float and an unsigned long in order to perform floating-
point math operations and to respond to the IEEE error states.

Keil Software — Cx51 Compiler User’s Guide 183

 6

For example:

#define NaN 0xFFFFFFFF /* Not a number (error) */
#define plusINF 0x7F800000 /* Positive overflow */
#define minusINF 0xFF800000 /* Negative overflow */

union f {
float f; /* Floating-point value */
unsigned long ul; /* Unsigned long value */

};

void main (void) {
float a, b;
union f x;

x.f = a * b;
if (x.ul == NaN || x.ul == plusINF || x.ul == minusINF) {
/* handle the error */

}
else {
/* result is correct */

}
}

184 Chapter 6. Advanced Programming Techniques

6

Accessing Absolute Memory Locations
The C programming language does not support a method of explicitly specifying
the memory location of a static or global variable. There are three ways to
reference explicit memory location. You can use the:

� Absolute memory access macros

� Linker location controls

� The _at_ keyword

Each of these three methods is described below.

Absolute Memory Access Macros
First, you may use the absolute memory access macros provided as part of the
Cx51 library. Use the following macros to directly access the memory areas of
the 8051.

CBYTE
DBYTE
FARRAY
FCARRAY

FCVAR
FVAR
PBYTE
XBYTE

CWORD
DWORD
PWORD
XWORD

Refer to “Absolute Memory Access Macros” on page 212 for definitions of these
macros.

Keil Software — Cx51 Compiler User’s Guide 185

 6

Linker Location Controls
The second method of referencing explicit memory location is to declare the
variables in a stand-alone C module, and use the location directives of the BL51
Linker/Locator to specify an absolute memory address.

In the following example, assume that we have a structure called
alarm_control that we want to reside at address 2000h in xdata. We start by
entering a source file named ALMCTRL.C that contains only the declaration for
this structure.

.

.

.
struct alarm_st {
unsigned int alarm_number;
unsigned char enable flag;
unsigned int time_delay;
unsigned char status;
};

xdata struct alarm_st alarm_control;
.
.
.

The Cx51 compiler generates an object file for ALMCTRL.C and includes a
segment for variables in the xdata memory area. Because it is the only variable
declared in this module, alarm_control is the only variable in that segment.
The name of the segment is ?XD?ALMCTRL. The Lx51 Linker/Locator allows
you to specify the base address of any segment by using the location directives.

For BL51 you must use the XDATA directive, since the alarm_control
variable was declared to reside in xdata:

BL51 ... almctrl.obj XDATA(?XD?ALMCTRL(2000h)) …

For LX51 the SEGMENTS directive is used to locate the segment in xdata
space:

LX51 ... almctrl.obj SEGMENTS(?XD?ALMCTRL(X:0x2000)) …

This instructs the linker to locate the segment named ?XD?ALMCTRL at
address 2000h in the xdata memory area.

In the same way you may also locate segments in the other memory areas like
code, xdata, pdata, idata, and data. Refer to the A51 Macro Assembler User’s
Guide for more information about the Linker/Locator.

186 Chapter 6. Advanced Programming Techniques

6

The _at_ Keyword
The third method of accessing absolute memory locations is to use the _at_
keyword when you declare variables in your C source files. The following
example demonstrates how to locate several different variable types using the
at keyword.

struct link {
struct link idata *next;
char code *test;

};

struct link list idata _at_ 0x40; /* list at idata 0x40 */
char xdata text[256] _at_ 0xE000; /* array at xdata 0xE000 */
int xdata i1 _at_ 0x8000; /* int at xdata 0x8000 */

void main (void) {
link.next = (void *) 0;
i1 = 0x1234;
text [0] = 'a';

}

Refer to “Absolute Variable Location” on page 104 for more information about
the _at_ keyword.

NOTE
If you use the _at_ keyword to declare a variable that accesses an XDATA
peripheral, you may require the volatile keyword to ensure that the C compiler
does not optimize out necessary memory accesses.

Keil Software — Cx51 Compiler User’s Guide 187

 6

Debugging
When you are using the µVision2 IDE and the µVision2 Debugger, you will get
complete debug information when you enable Options for Target – Output –
Debug Information. For command line tools the following rules apply.

By default, the C51 compiler uses the Intel Object Format (OMF-51) for object
files and generates complete symbol information. All Intel compatible emulators
may be used for program debugging. The DEBUG directive embeds debugging
information in the object file. In addition, the OBJECTEXTEND directive
embeds additional variable type information in the object file which allows type-
specific display of variables and structures when using certain emulators.

The Cx51 compiler uses the OMF2 object file format. The OMF2 format is also
used by the Cx51 compiler when the directive OMF2 is active. The OMF2
format requires the extended LX51 linker/locater and cannot be used with the
BL51 linker/locater. The OMF2 object file format provides extensive debug
information and is supported by the µVision2 debugger and some emulators.

188 Chapter 6. Advanced Programming Techniques

6

Keil Software — Cx51 Compiler User’s Guide 189

 7

Chapter 7. Error Messages
This chapter lists Fatal Error, Syntax Error, and Warning messages that you may
encounter as you develop a program. Each section includes a brief description of
the message as well as corrective actions you can take to eliminate the error or
warning condition.

Fatal Errors
Fatal errors cause immediate termination of the compilation. These errors
normally occur as the result of invalid options specified on the command line.
Fatal errors are also generated when the compiler cannot access a specified
source include file.

Fatal error messages conform to one of the following formats:

C51 FATAL-ERROR -
 ACTION: <current action>
 LINE: <line in which the error is detected>
 ERROR: <corresponding error message>
C51 TERMINATED.

C51 FATAL-ERROR -
 ACTION: <current action>
 FILE: <file in which the error is detected>
 ERROR: <corresponding error message>
C51 TERMINATED.

The following are descriptions of the possible text for the Action and Error
fields in the above messages.

190 Chapter 7. Error Messages

7

Actions
ALLOCATING MEMORY

The compiler could not allocate enough memory to compile the specified
source file.

CREATING LIST-FILE / OBJECT-FILE / WORKFILE
The compiler could not create the list file, object file, or work file. This error
may occur if the disk is full or write-protected, or if the file already exists and
is read only.

GENERATING INTERMEDIATE CODE
The source file contains a function that is too large to be translated into
pseudo-code by the compiler. Try breaking the function into smaller
functions and re-compiling.

OPENING INPUT-FILE
The compiler failed to find or open the selected source or include file.

PARSING INVOKE-/#PRAGMA-LINE
An error was detected while evaluating arguments on the command line or
while evaluating parameters in a #pragma statement.

PARSING SOURCE-FILE / ANALYZING DECLARATIONS
The source file contains too many external references. Reduce the number of
external variables and functions accessed by the source file.

WRITING TO FILE
An error was encountered while writing to the list file, object file, or work
file.

Keil Software — Cx51 Compiler User’s Guide 191

 7

Errors
'(' AFTER CONTROL EXPECTED

Some control parameters need an argument enclosed in parentheses. This
message is displayed when the left parenthesis is missing.

')' AFTER PARAMETER EXPECTED
This message indicates that the right parenthesis of the enclosed argument is
missing.

BAD DIGIT IN NUMBER
The numerical argument of a control parameter contains invalid characters.
Only decimal digits are acceptable.

CAN'T CREATE FILE
The filename defined on the FILE line cannot be created.

CAN'T HAVE GENERAL CONTROL IN INVOCATION LINE
General controls (for example, EJECT) cannot be included on the command
line. Place these controls in the source file using the #pragma statement.

FILE DOES NOT EXIST
The filename defined on the FILE line, cannot be found.

FILE WRITE-ERROR
An error occurred while writing to the list, preprint, work, or object file
because of insufficient disk space.

IDENTIFIER EXPECTED
This message is generated when the DEFINE control has no arguments.
DEFINE requires an identifier as its argument. This is the same convention
as in the C language.

MEMORY SPACE EXHAUSTED
The compiler could not allocate enough memory to compile the specified
source file. If you receive this message consistently, you should split the
source file into two or more smaller files and re-compile.

MORE THAN 100 ERRORS IN SOURCE-FILE
During the compilation more than 100 errors were detected. This causes the
termination of the compiler.

MORE THAN 256 SEGMENTS/EXTERNALS
More than 256 total references were encountered in a source file. A single
source file cannot contain more than 256 functions or external references.
This is a historical restriction mandated by the Intel Object Module Format
(OMF-51). Functions which contain scalar and/or bit declarations produce
two and sometimes three segment definitions in the object file.

192 Chapter 7. Error Messages

7

NON-NULL ARGUMENT EXPECTED
The selected control parameter needs an argument (for example, a filename
or a number) enclosed in parentheses.

OUT OF RANGE NUMBER
The numerical argument of a control parameter is out of range. For instance,
the OPTIMIZE control allows only the numbers 0 through 6. A value of 7
would generate this error message.

PARSE STACK OVERFLOW
The parse stack has overflowed. This can occur if the source program
contains extremely complex expressions or if blocks are nested more than 31
levels deep.

PREPROCESSOR: LINE TOO LONG (32K)
An intermediate expansion exceeded 32K characters in length.

PREPROCESSOR: MACROS TOO NESTED
During macro expansion the stack consumption of the preprocessor grew too
large to continue. This message usually indicates a recursive macro
definition, but can also indicate a macro with too many levels of nesting.

RESPECIFIED OR CONFLICTING CONTROL
A command-line parameter was specified twice or conflicting command-line
parameters were specified.

SOURCE MUST COME FROM A DISK-FILE
The source and include files must exist on either a hard disk or diskette. The
console CON:, :CI:, or similar devices are not allowed as input files.

UNKNOWN CONTROL
The selected control parameter is unrecognized by the compiler.

Keil Software — Cx51 Compiler User’s Guide 193

 7

Syntax and Semantic Errors
Syntax and semantic errors typically occur in the source program. They identify
actual programming errors. When one of these errors is encountered, the
compiler attempts to recover from the error and continue processing the source
file. As more errors are encountered, the compiler outputs additional error
messages. However, no object file is produced.

Syntax and semantic errors produce a message in the list file. These error
messages are in the following format:

*** ERROR number IN LINE line OF file: error message

where:

number is the error number.

line corresponds to the line number in the source file or include
file.

file is the name of the source or include file in which the error
was detected.

error message is descriptive text and is dependent upon the type of error
encountered.

The following table lists syntax and semantic errors by error number. The error
message displayed is listed along with a brief description and possible cause and
correction.

Number Error Message and Description

100 Unprintable character 0x?? skipped
An illegal character was found in the source file. (Note that characters inside a
comment are not checked.)

101 Unclosed string
A string is not terminated with a quote (").

102 String too long
A string may not contain more than 4096 characters. Use the concatenation
symbol (‘\’) to logically continue strings longer than 4096 characters. Lines
terminated in this fashion are concatenated during lexical analysis.

103 Invalid character constant
A character constant has an invalid format. The notation ‘\c’ is valid only when c
is any printable ASCII character.

125 Declarator too complex (20)
The declaration of an object may contain a maximum of 20 type modifiers (‘[‘, ‘]’,
‘*’, ‘(‘, ‘)’). This error is almost always followed by error 126.

194 Chapter 7. Error Messages

7

Number Error Message and Description

126 Type-stack underflow
The type declaration stack has underflowed. This error is usually a side-effect of
error 125.

127 Invalid storage class
An object was declared with an invalid memory space specification. This occurs if
an object is declared with storage class of auto or register outside of a function.

129 Missing ‘;’ before ‘token’
This error usually indicates that a semicolon is missing from the previous line.
When this error occurs, the compiler may generate an excess of error messages.

130 Value out of range
The numerical argument after a using or interrupt specifier is invalid. The using
specifier requires a register bank number between 0 and 3. The interrupt
specifier requires an interrupt vector number between 0 and 31.

131 Duplicate function-parameter
A formal parameter name exists more than once within a function. The formal
parameter names must be unique in function declarations.

132 Not in formal parameter list
The parameter declarations inside a function use a name not present in the
parameter name list. For example:

char function (v0, v1, v2)
char *v0, *v1, *v5;
/* 'v5' is unknown in the formal list */
{
/* ... */

}

134 xdata/idata/pdata/data on function not permitted
Functions always reside in code memory and cannot be executed out of other
memory areas. Functions are implicitly defined as memory type code.

135 Bad storage class for bit
Declarations of bit scalars may include one of the static or extern storage
classes. The register or alien classes are invalid.

136 ‘void’ on variable
The type void is allowed only as a non-existent return value or an empty argument
list for functions (void func (void)), or in combination with a pointer (void *).

138 Interrupt() may not receive or return value(s)
An interrupt function was defined with one or more formal parameters or with a
return value. Interrupt functions may not contain invocation parameters or return
values.

140 Bit in illegal memory-space
Definitions of bit scalars may contain the optional memory type data. If the
memory type is missing then the type data is assumed, because bits always
reside in the internal data memory. This error can occur when an attempt is made
to use another data type with a bit scalar definition.

141 Syntax error near token: expected other_token, …………
The token seen by the compiler is wrong. Depending upon the context the
expected token is displayed.

142 Invalid base address
The base-address of an sfr or sbit declaration is in error. Valid bases are values
in the 0x80 to 0xFF range. If the declaration uses the notation base^pos, then the
base address must also be a multiple of eight.

Keil Software — Cx51 Compiler User’s Guide 195

 7

Number Error Message and Description

143 Invalid absolute bit address
The absolute address in sbit declarations must be in the 0x80 to 0xFF range.

144 Base^pos: invalid bit position
The definition of the bit position within an sbit declaration must be in the 0 to 7
range.

145
146

Undeclared sfr
Invalid sfr
The declaration of an absolute bit (base^pos) contains an invalid
base-specification. The base must be the name of a previously declared sfr. Any
other names are invalid.

147 Object too large
The size of a single object may not exceed the absolute limit of 65535 (64 Kbytes -
1).

149 Function member in struct/union
A struct or union may not contain a function-type member. However, pointers to
functions are perfectly valid.

150 Bit member in struct/union
A union-aggregate may not contain members of type bit. This restriction is
imposed due to the architecture of the 8051.

151 Self relative struct/union
A structure cannot contain an instance of itself.

152 Bit-field type too small for number of bits
The number of bits specified in the bit-field declaration exceeds the number of bits
in the given base type.

153 Named bit-field cannot have zero width
The named field had a zero width. Only unnamed bit-fields are allowed to have
zero width.

154 Ptr to field
Pointers to bit-fields are not valid types.

155 char/int required for fields
The base type for bit-fields requires one of the types char or int. unsigned char
and unsigned int types are also valid.

156
157

Alien permitted on functions only
Var_parms on alien function
The storage class alien is allowed only for external PL/M-51 functions. The formal
notation (char *, …) is not legal on alien functions. PL/M-51 functions always
require a fixed number of parameters.

158 Function contains unnamed parameter
The parameter list of a function definition contains an unnamed abstract type
definition. This notation is permitted only in function prototypes.

159 Type follows void
Prototype declarations of functions may contain an empty parameter list (for
example, int func (void)). This notation may not contain further type definitions
after void.

160 void invalid
The void type is legal only in combination with pointers or as the non-existent
return value of a function.

161 Formal parameter ignored
A declaration of an external function inside a function used a parameter name list
without any type specification (for example, extern yylex(a,b,c);).

196 Chapter 7. Error Messages

7

Number Error Message and Description

162 Duplicate function-parameter
The name of a defined object inside a function duplicates the name of a
parameter.

163 Unknown array size
In general, a formal size specifier is not required for external, single, or
multi-dimensional arrays. Typically, the compiler calculates the size at
initialization. For external arrays, the size is of no great interest. This error is the
result of attempting to use the sizeof operator on an undimensioned array or on a
multi-dimensional array with undefined element sizes.

164 Ptr to nul
This error is usually the result of a previous error for a pointer declaration.

165 Ptr to bit
The type combination pointer to bit is not a legal type.

166 Array of functions
Arrays cannot contain functions; however, they may contain pointers to functions.

167 Array of fields
Bit-fields may not be arranged as arrays.

168 Array of bit
An array may not have type bit as its basic type. This limitation is imposed by the
architecture of the 8051.

169 Function returns function
A function cannot return a function; however, a function may return a pointer to a
function.

170 Function returns array
A function cannot return an array; however, a pointer to an array is valid.

171 Missing enclosing loop
A break or continue statement may occur only within a for, while, do, or switch
statement.

172 Missing enclosing switch
A case statement may occur only within a switch statement.

173 Missing return-expression
A function which returns a value of any type but int, must contain a return
statement including an expression. Because of compatibility to older programs, no
check is done on functions which return an int value.

174 Return-expression on void-function
A void function cannot return a value and thus may not contain a return
statement.

175 Duplicate case value
Each case statement must contain a constant expression as its argument. The
value must not occur more than once in the given level of the switch statement.

176 More than one ‘default’
A switch statement may not contain more than one default statement.

177 Different struct/union
Different types of structures are used in an assignment or as an argument to a
function.

178 Struct/union comparison illegal
The comparison of two structures or unions is not allowed according to ANSI.

179 Illegal type conversation from/to ‘void’
Type casts to or from void are invalid.

Keil Software — Cx51 Compiler User’s Guide 197

 7

Number Error Message and Description

180 Can’t cast to ‘function’
Type casts to function types are invalid. Try casting to a pointer to a function.

181 Incompatible operand
At least one operand type is not valid with the given operator (for example,
~float_type).

183 Unmodifiable lvalue
The object to be changed resides in code memory or has const attribute and
therefore cannot be modified.

184 Sizeof: illegal operand
The sizeof operator cannot determine the size of a function or bit-field.

185 Different memory space
The memory space of an object declaration differs from the memory space of a
prior declaration for the same object.

186 Invalid dereference
This error message may be caused by an internal compiler problem. Please
contact technical support if this error is repeated.

187 Not an lvalue
The needed argument must be the address of an object that can be modified.

188 Unknown object size
The size of an object cannot be computed because of a missing dimension size
on an array or indirection via a void pointer.

189 ‘&’ on bit/sfr illegal
The address-of operator (‘&’) is not allowed on bit objects or special function
registers (sfr).

190 ‘&’: not an lvalue
An attempt was made to construct a pointer to an anonymous object.

193
193
193
193

Illegal op-type(s)
Illegal add/sub on ptr
Illegal operation on bit(s)
Bad operand type
This error results when an expression uses illegal operand-types with the given
operator. Examples of invalid expressions are bit * bit, ptr + ptr, or ptr * anything.
The error message includes the operator which caused the error.

The following operations may be executed with bit-type operands:
� Assignment (=)
� OR / Compound OR (|, |=)
� AND / Compound AND (&, &=)
� XOR / Compound XOR (^, ^=)
� Compare bit with bit or constant (==, !=)
� Negation (~)
bit operands may be used in expressions with other data types. In this case a
type cast is automatically performed.

194 ‘*’ indirection to object of unknown size
The indirection operator * may not be used with void pointers because the object
size, which the pointer refers to, is unknown.

195 ‘*’ illegal indirection
The * operator may not be applied on non-pointer arguments.

198 Chapter 7. Error Messages

7

Number Error Message and Description

196 Mspace probably invalid
The conversion of a constant to a pointer constant yields an invalid memory space,
for example char *p = 0x91234.

198 Sizeof returns zero
The sizeof operator returns a zero value.

199 Left side of ‘->’ requires struct/union pointer
The argument on the left side of the -> operator must be a struct pointer or a
union pointer.

200 Left side of ‘.’ requires struct/union
The argument on the left side of the . operator must have type struct or union.

201 Undefined struct/union tag
The given struct or union tag name is unknown.

202 Undefined identifier
The given identifier is undefined.

203 Bad storage class (nameref)
This error indicates a problem within the compiler. Please contact technical
support if this error is repeated.

204 Undefined member
The given member name in a struct or union reference is undefined.

205 Can’t call an interrupt function
An interrupt function should not be called like a normal function. The entry and
exit code for these functions is specially coded for interrupts.

207 Declared with ‘void’ parameter list
A function declared with a void parameter list cannot receive parameters from the
caller.

208 Too many actual parameters
The function call includes more parameters than previously declared.

209 Too few actual parameters
Too few actual parameters were included in a function call.

210 Too many nested calls
Function calls can be nested at most 10 levels deep.

211 Call not to a function
The term of a function call does not evaluate to a function or pointer to function.

212 Indirect call: parameters do not fit within registers
An indirect function call through a pointer cannot contain actual parameters. An
exception to this rule is when all parameters can be passed in registers. This is
due to the method of parameter passing employed by Cx51. The name of the
called function must be known because parameters are written into the data
segment of the called function. For indirect calls, however, the name of the called
function is not known.

213 Left side of asn-op not an lvalue
The address of a changeable object is required on the left side of the assignment
operator.

214 Illegal pointer conversion
Objects of type bit, float or aggregates cannot be converted to pointers.

215 Illegal type conversion
Struct/union/void cannot be converted to any other types.

Keil Software — Cx51 Compiler User’s Guide 199

 7

Number Error Message and Description

216 Subscript on non-array or too many dimensions
An array reference contained either too many dimension specifiers or the object
was not an array.

217 Non-integral index
The dimension expression of an array must be of the type char, unsigned char,
int, or unsigned int. All other types are illegal.

218 Void-type in controlling expression
The limit expression in a while, for, or do statement cannot be of type void.

219 Long constant truncated to int
The value of a constant expression must be capable of being represented by an
int type.

220 Illegal constant expression
A constant expression is expected. Object names, variables or functions, are not
allowed in constant expressions.

221 Non-constant case/dim expression
A case value or a dimension specification ([]) must be a constant expression.

222
223

Div by zero
Mod by zero
The compiler detected a division or a modulo by zero.

225 Expression too complex, simplify
An expression is too complex and must be broken into two or more sub
expressions.

226 Duplicate struct/union/enum tag
The name for a struct, union, or enum is already defined within current scope.

227 Not a union tag
The name for a union is already defined as a different type.

228 Not a struct tag
The name for a struct is already defined as a different type.

229 Not an enum tag
The name for an enum is already defined as a different type.

230 Unknown struct/union/enum tag
The specified struct, union, or enum name is undefined.

231 Redefinition
The specified name is already defined and cannot be redefined.

232 Duplicate label
The specified label is already defined.

233 Undefined label
This message indicates a label that was accessed but was not defined.
Sometimes this message appears several lines after the actual label reference.
This is caused by the method used to search for undefined labels.

234 ‘{‘, scope stack overflow(31)
The maximum of 31 nested blocks has been exceeded. Additional levels of
nested blocks are ignored.

235 Parameter <number>: different types
Parameter types in the function declaration are different from those in the function
prototype.

200 Chapter 7. Error Messages

7

Number Error Message and Description

236 Different length of parameter lists
The number of parameters in the function declaration is different from the number
of parameters in the function prototype.

237 Function already has a body
An attempt was made to declare a body for a function twice.

238
239

Duplicate member
Duplicate parameter
An attempt was made to define an already defined struct member or function
parameter.

240 More than 128 local bit’s
No more than 128 bit-scalars may be defined inside a function.

241 Auto segment too large
The required space for local objects exceeds the model-dependent maximum. The
maximum segment sizes are defined as follows:

 SMALL 128 bytes
 COMPACT 256 bytes
 LARGE 65535 bytes

242 Too many initializers
The number of initializers exceeded the number of objects to be initialized.

243 String out of bounds
The number of characters in the string exceeds the number of characters required
to initialize the array of characters.

244 Can’t initialize, bad type or class
An attempt was made to initialize a bit or an sfr.

245 Unknown pragma, line ignored
The #pragma statement is unknown so, the entire line is ignored.

246 Floating-point error
This error occurs when a floating-point argument lies outside of the valid range for
32-bit floating values. The numeric range of the 32-bit IEEE values is:
±1.175494E-38 to ±3.402823E+38.

247 Non-address/constant initializer
A valid initializer expression must evaluate to a constant value or the name of an
object plus or minus a constant.

248 Aggregate initialization needs curly braces
The braces ({ }) around the given struct or union initializer were missing.

249 Segment <name>: Segment too large
The compiler detected a data segment that was too large. The maximum size of a
data segment depends on memory space.

250 ‘\esc’; value exceeds 255
An escape sequence in a string constant exceeds the valid value range. The
maximum value is 255.

251 Illegal octal digit
The specified character is not a valid octal digit.

252 Misplaced primary control, line ignored
Primary controls must be specified at the start of the C module before any
#include directives or declarations.

Keil Software — Cx51 Compiler User’s Guide 201

 7

Number Error Message and Description

253 Internal error (ASMGEN\CLASS)
This error can occur under the following circumstances:
� An intrinsic function (for example, _testbit_) was activated incorrectly. This is

the case when no prototype of the function exists and the number of actual
parameters or their type is incorrect. For this reason, the appropriate
declaration files must always be used (INTRINS.H, STRING.H). See Chapter 8
for more information on intrinsic functions.

� Cx51 recognized an internal consistency problem. Please contact technical
support if this error occurs.

255 Switch expression has illegal type
The expression in a switch statement does not have a legal data type.

256 Conflicting memory model
A function which contains the alien attribute may contain only the model
specification small. The parameters of the function must lie in internal data
memory. This applies to all external alien declarations and alien functions. For
example:

alien plm_func (char c) large { ... }

generates error 256.
257 Alien function cannot be reentrant

A function that contains the alien attribute cannot simultaneously contain the
attribute reentrant. The parameters of the function cannot be passed via the
virtual stack. This applies to all external alien declarations and alien functions.

258 Mspace illegal on struct/union member
Mspace on parameter ignored
A member of a structure or a parameter may not contain the specification of a
memory type. The object to which the pointer refers may, however, contain a
memory type. For example:

struct vp { char code c; int xdata i; };

generates error 258.

struct v1 { char c; int xdata *i; };

is the correct declaration for the struct.
259 Pointer: different mspace

A spaced pointer has been assigned another spaced pointer with a different
memory space. For example:

char xdata *p1;
char idata *p2;
p1 = p2; /* different memory spaces */

260 Pointer truncation
A spaced pointer has been assigned some constant value which exceeds the
range covered by the pointers memory space. For example:

char idata *p1 = 0x1234; /* result is 0x34 */

202 Chapter 7. Error Messages

7

Number Error Message and Description

261 Bit(s) in reentrant ()
A function with the attribute reentrant cannot have bit objects declared inside the
function. For example:

|int func1 (int i1) reentrant {
bit b1, b2; /* not allowed ! */
return (i1 - 1);

}

262 ‘using/disable’: can’t return bit value
Functions declared with the using attribute and functions which rely on disabled
interrupts (#pragma disable) cannot return a bit value to the caller. For example:

bit test (void) using 3
{
bit b0;
return (b0);

}

produces error 262.
263 Save/restore: save-stack overflow/underflow

The maximum nesting depth #pragma save comprises eight levels. The pragmas
save and restore work with a stack according to the LIFO (last in, first out)
principal.

264 Intrinsic ‘<intrinsic_name>’: declaration/activation error
This error indicates that an intrinsic function was defined incorrectly (parameter
number or ellipsis notation). This error should not occur if you are using the
standard .H files. Make sure that you are using the .H files that were included with
Cx51. Do not try to define your own prototypes for intrinsic library functions.

265 Recursive call to non-reentrant function
Non reentrant functions cannot be called recursively since such calls would
overwrite the parameters and local data of the function. If you need recursive
calls, you should declare the function with the reentrant attribute.

267 Funcdef requires ANSI-style prototype
A function was invoked with parameters but the declaration specifies an empty
parameter list. The prototype should be completed with the parameter types in
order to give the compiler the opportunity to pass parameters in registers and have
the calling mechanism consistent over the application.

268 Bad taskdef (taskid/priority/using)
The task declaration is incorrect.

271 Misplaced ‘asm/endasm’ control
The asm and endasm statements may not be nested. Endasm requires that an
asm block be opened by a previous asm statement. For example:

#pragma asm
.
.
.
assembler instruction(s)
.
.
.
#pragma endasm

Keil Software — Cx51 Compiler User’s Guide 203

 7

Number Error Message and Description

272 ‘asm’ requires SRC control to be active
The use of asm and endasm in a source file requires that the file be compiled
using the SRC directive. The compiler then generates an assembly source file
which may then be assembled with A51.

273 ‘asm/endasm’ not allowed in include file
The use of asm and endasm is not permitted within include files. For debug
reasons executable code should be avoided in include files anyway.

274 Absolute specifier illegal
The absolute address specification is not allowed on bit objects, functions, and
function locals. The address must conform to the memory space of the object.
For example, the following declaration is invalid because the range of the indirectly
addressable data space is 0x00 to 0xFF.

idata int _at_ 0x1000;

278 Constant too big
This error occurs when a floating-point argument lies outside of the valid range for
32-bit floating values. The numeric range of the 32-bit IEEE values is:
±1.175494E-38 to ±3.402823E+38.

279 Multiple initialization
An attempt has been made to initialize some object more than once.

280 unreferenced symbol/label/parameter
A symbol, label, or parameter that was declared in a function and was not used.

281 non-pointer type converted to pointer
The referenced program object cannot be converted to a pointer.

282 not a sfr reference
This function invocation requires a SFR location as parameter.

283 asmparms: parameters do not fit within registers
Parameters do not fit within the available CPU registers.

284 <name>: in overlayable space, function no longer reentrant
A reentrant function contains explicit memory type specifiers for local variables.
The function will no longer be fully reentrant.

300 Unterminated comment
This message occurs when a comment does not have a closing delimiter (*/).

301 Identifier expected
The syntax of a preprocessor directive expects an identifier.

302 Misused # operator
This message occurs if the stringize operator ‘#’ is not followed by an identifier.

303 Formal argument expected
This message occurs if the stringize operator ‘#’ is not followed by an identifier
representing a formal parameter name of the macro currently being defined.

304 Bad macro parameter list
The macro parameter list does not represent a brace enclosed, comma separated
list of identifiers.

305 Unterminated string/char constant
A string or character constant is invalid. Typically, this error is encountered if the
closing quote is missing.

306 Unterminated macro call
The end of the input file was reached while the preprocessor was collecting and
expanding actual parameters of a macro call.

204 Chapter 7. Error Messages

7

Number Error Message and Description

307 Macro ‘name’: parameter count mismatch
The number of actual parameters in a macro call does not match the number of
parameters of the macro definition. This error indicates that too few parameters
were specified.

308 Invalid integer constant expression
The numerical expression of an if/elif directive contains a syntax error.

309 Bad or missing file name
The filename argument in an include directive is invalid or missing.

310 Conditionals too nested(20)
The source file contains too many nested directives for conditional compilation.
The maximum nesting level allowed is 20.

311
312

Misplaced elif/else control
Misplaced endif control
The directives elif, else, and endif are legal only within an if, ifdef, or ifndef
directive.

313 Can’t remove predefined macro ‘name’
An attempt was made to remove a predefined macro. User-defined macros may
be deleted using the #undef directive. Predefined macros cannot be removed.

314 Bad # directive syntax
In a preprocessor directive, the character ‘#’ must be followed by either a newline
character or the name of a preprocessor command (for example, if/define/ifdef,
…).

315 Unknown # directive ‘name’
The name of the preprocessor directive is not known to the compiler.

316 Unterminated conditionals
The number of endifs does not match the number of if or ifdefs after the end of the
input file.

318 Can’t open file ‘filename’
The given file could not be opened.

319 ‘File’ is not a disk file
The given file is not a disk file. Files other than disk files are not legal for
compilation.

320 User_error_text
This error number is reserved for errors introduced with the #error directive of the
preprocessor. The #error directive emits the user error text to come up with error
320 which prevents the compiler from generating code.

321 Missing <character>
In the filename argument of an include directive, the closing character is missing.
For example: #include <stdio.h

325 Duplicate formal parameter ‘name’
A formal parameter of a macro may be define only once.

326 Macro body cannot start or end with ‘##’
The concat operator (‘##’) cannot be the first or last token of a macro body.

327 Macro ‘macroname’: more than 50 parameters
The number of parameters per macro is limited to 50.

Keil Software — Cx51 Compiler User’s Guide 205

 7

Warnings
Warnings produce information about potential problems which may occur during
the execution of the resulting program. Warnings do not hinder compilation of
the source file.

Warnings produce a message in the list file. These warning messages are in the
following format:

*** WARNING number IN LINE line OF file: warning message

where:

number is the error number.

line corresponds to the line number in the source file or include
file.

file is the name of the source or include file in which the error
was detected.

warning message is descriptive text that is dependent upon the type of warning
encountered.

The following table lists warnings by number. The warning message displayed
is listed along with a brief description and possible cause and correction.

Number Warning Message and Description

173 Missing return-expression
A function which returns a value of any type but int, must contain a return
statement including an expression. Because of compatibility to older programs, no
check is done on functions which return an int value.

182 Pointer to different objects
A pointer was assigned the address of a different type.

185 Different memory space
The memory space of an object declaration differs from the memory space of a
prior declaration for the same object.

196 Mspace probably invalid
This warning is caused by the assignment of an invalid constant value to a pointer.
Valid pointer constants are long or unsigned long. The compiler uses 24 bits
(3 bytes) for pointer objects. The low-order 16 bits represent the offset. The
high-order 8 bits represent the memory space selector.

198 Sizeof returns zero
The calculation of the size of an object yields zero. This value may be wrong if the
object is external or if not all dimension sizes of an array are known.

206 Chapter 7. Error Messages

7

Number Warning Message and Description

206 Missing function prototype
The called function is unknown because no prototype declaration exists. Calls to
unknown functions are always at risk that the number of parameters does not
correspond to the actual requirements. If this is the case, the function is called
incorrectly.

Without function prototypes, the compiler has no way to check for missing or
excessive parameters or their types. To avoid this warning, include prototypes of
the functions used in your program.
Function prototypes must be specified before the function is called. Note that
function definitions automatically produce prototypes.

209 Too few actual parameters
Too few actual parameters were included in a function call.

219 Long constant truncated to int
The value of a constant expression must be capable of being represented by an int
type.

245 Unknown pragma, line ignored
The #pragma statement is unknown, so the entire pragma line is ignored.

258 Mspace illegal on struct/union member
Mspace on parameter ignored
A member of a structure or a parameter may not contain the specification of a
memory type. The object to which the pointer refers may, however, contain a
memory type. For example:

struct vp { char code c; int xdata i; };

generates error 258.

struct v1 { char c; int xdata *i; };

is the correct declaration for the struct.
259 Pointer: different mspace

This warning is generated when two pointers that do not refer to the same memory
type of object are compared.

260 Pointer truncation
This error or warning occurs when converting a pointer to a pointer with a smaller
offset area. The conversion takes place, but the offset of the larger pointer is
truncated to fit into the smaller pointer.

261 Bit in reentrant function
A reentrant function cannot contain bits because bit scalars cannot be stored on
the virtual stack.

265 ‘name’: recursive call to non-reentrant function
A direct recursion to a non-reentrant function was discovered. This can be
intentional but should be functionally checked (through the generated code) for
each individual case. Indirect recursions are discovered by the linker/locator.

Keil Software — Cx51 Compiler User’s Guide 207

 7

Number Warning Message and Description

271 Misplaced ‘asm/endasm’ control
The asm and endasm statements may not be nested. Endasm requires that an
asm block be opened by a previous asm statement. For example:

#pragma asm
.
.
.
assembler instruction(s)
.
.
.
#pragma endasm

275 Expression with possibly no effect
The compiler detected an expression which does not generate code. For example:

void test (void) {
int i1, i2, i3;
i1, i2, i3; /* dead expression */
i1 << 3; /* result is not used */

}

276 Constant in condition expression
The compiler detected a conditional expression with a constant value. In most
cases this is a typing mistake. For example:

void test (void) {
int i1, i2, i3;
if (i1 = 1) i2 = 3; /* const assigned with = */
while (i3 = 2); /* const assigned with = */

}

277 Different mspaces to pointer
A typedef declaration has a conflict of the memory spaces. For example:

typedef char xdata XCC; /* mspace xdata */
typedef XCC idata PICC; /* mspace collision */

280 Unreferenced symbol/label
This message identifies a symbol or label which has been defined but not used.

307 Macro ‘name’: parameter count mismatch
The number of actual parameters in a macro call does not match the number of
parameters of the macro definition. This warning indicates that too many
parameters were used. Excess parameters are ignored.

317 Macro ‘name’: invalid redefinition
A predefined macro cannot be redefined or removed. Refer to “Predefined Macro
Constants” on page 138 for more information.

322 Unknown identifier
The identifier in an #if directive line is undefined (evaluates to FALSE).

323 Newline expected, extra characters found
A #directive line is correct but contains extra non commented characters. For
example:

#include <stdio.h> foo

208 Chapter 7. Error Messages

7

Number Warning Message and Description

324 Preprocessor token expected
A preprocessor token was expected but a newline character was found in input.
For example: #line where the arguments to the #line directive are missing.

Keil Software — Cx51 Compiler User’s Guide 209

 8

Chapter 8. Library Reference
The Cx51 run-time library provides you with more than 100 predefined
functions and macros to use in your 8051 C programs. This library makes
embedded software development easier by providing you with routines that
perform common programming tasks such as string and buffer manipulation,
data conversion, and floating-point math operations.

Typically, the routines in this library conform to the ANSI C Standard.
However, some functions differ slightly in order to take advantage of the
features found in the 8051 architecture. For example, the function isdigit returns
a bit value as opposed to an int. Where possible, function return types and
argument types are adjusted to use the smallest possible data type. In addition,
unsigned data types are favored over signed types. These alterations to the
standard library provide a maximum of performance while also reducing
program size.

All routines in this library are implemented to be independent of and to function
using any register bank.

Intrinsic Routines
The Cx51 compiler supports a number of intrinsic library functions.
Non-intrinsic functions generate ACALL or LCALL instructions to perform the
library routine. Intrinsic functions generate in-line code to perform the library
routine. The generated in-line code is much faster and more efficient than a
called routine would be. The following functions are available in intrinsic form:

crol
cror
irol

iror
lrol
lror

nop
testbit

These routines are described in detail in the following sections.

210 Chapter 8. Library Reference

8

Library Files
The Cx51 library includes six different compile-time libraries which are
optimized for various functional requirements. These libraries support most of
the ANSI C function calls.

Library File Description

C51S.LIB Small model library without floating-point arithmetic

C51FPS.LIB Small model floating-point arithmetic library

C51C.LIB Compact model library without floating-point arithmetic

C51FPC.LIB Compact model floating-point arithmetic library

C51L.LIB Large model library without floating-point arithmetic

C51FPL.LIB Large model floating-point arithmetic library

80C751.LIB Library for use with the Signetics 8xC751 and derivatives.
The Philips 80C51MX, Dallas 390 contiguous mode and variable code banking

 requires a different set of Cx51 run-time libraries. The LX51 linker/locater
automatically adds the correct library set to your project.

Several library modules are provided in source code form. These routines are
used to perform low-level hardware-related I/O for the stream I/O functions.
You can find the source for these routines in the LIB directory. You may
modify these source files and substitute them for the library routines. By using
these routines, you can quickly adapt the library to perform (using any hardware
I/O device available in your target) stream I/O. Refer to “Stream Input and
Output” on page 224 for more information.

C51 Compiler 211

 8

Standard Types
The Cx51 standard library contains definitions for a number of standard types
which may be used by the library routines. These standard types are declared in
include files which you may access from your C programs.

jmp_buf
The jmp_buf type is defined in SETJMP.H and specifies the buffer used by the
setjmp and longjmp routines to save and restore the program environment. The
jmp_buf type is defined as follows:

#define _JBLEN 7
typedef char jmp_buf[_JBLEN];

va_list
The va_list array type is defined in STDARG.H. This type holds data required by
the va_arg and va_end routines. The va_list type is defined as follows:

typedef char *va_list;

212 Chapter 8. Library Reference

8

Absolute Memory Access Macros
The Cx51 standard library contains definitions for a number of macros that
allow you to access explicit memory addresses. These macros are defined in
ABSACC.H. Each of these macros is defined to be used like an array.

CBYTE
The CBYTE macro allows you to access individual bytes in the program
memory of the 8051. You may use this macro in your programs as follows:

rval = CBYTE [0x0002];

to read the contents of the byte in program memory at address 0002h.

CWORD
The CWORD macro allows you to access individual words in the program
memory of the 8051. You may use this macro in your programs as follows:

rval = CWORD [0x0002];

to read the contents of the word in program memory at address 0004h
(2 × sizeof (unsigned int) = 4).

NOTE
The index used with this macro does not represent the memory address of the
integer value. To obtain the memory address, you must multiply the index by the
size of an integer (2 bytes).

C51 Compiler 213

 8

DBYTE
The DBYTE macro allows you to access individual bytes in the internal data
memory of the 8051. You may use this macro in your programs as follows:

rval = DBYTE [0x0002];
DBYTE [0x0002] = 5;

to read or write the contents of the byte in internal data memory at address
0002h.

DWORD
The DWORD macro allows you to access individual words in the internal data
memory of the 8051. You may use this macro in your programs as follows:

rval = DWORD [0x0002];
DWORD [0x0002] = 57;

to read or write the contents of the word in internal data memory at address
0004h (2 × sizeof (unsigned int) = 4).

NOTE
The index used with this macro does not represent the memory address of the
integer value. To obtain the memory address, you must multiply the index by the
size of an integer (2 bytes).

214 Chapter 8. Library Reference

8

FARRAY, FCARRAY
The FARRAY and FCARRAY macros can be used to access an array of type
object in the far and const far memory areas. FARRAY provides access to the
far space (memory class HDATA). FCARRAY provides access to the const
far space (memory class HCONST). You can use this macros in your programs
as follows:

int i;
long l;

l = FARRAY (long, 0x8000)[i];
FARRAY (long, 0x8000)[10] = 0x12345678;

#define DualPortRam FARRAY (int, 0x24000)
DualPortRam [i] = 0x1234;

l = FCARRAY (long, 0x18000)[5];

The FARRAY and FCARRAY macros scales the index by the size of type
object and adds the result to addr. The final address is then used to access the
memory.

NOTE
The absolute addressed object cannot cross a 64KB segment boundary. For
example, you cannot access a long array that has 10 elements and starts at
address 0xFFF8.

C51 Compiler 215

 8

FVAR, FCVAR,
The FVAR and FCVAR macro definitions may be used to access absolute
memory addresses in the far and const far memory areas. FVAR provides
access to the far space (memory class HDATA). FCVAR provides access to
the const far space (memory class HCONST). You can use these macros in
your programs as follows:

#define IOVAL FVAR (long, 0x14FFE) // long at HDATA address 0x14FFE
var = IOVAL; /* read */
IOVAL = 0x10; /* write */

var = FCVAR (int, 0x24002) /* read int from HCONST address 0x24002 */

The HVAR macro uses the huge modifier to access the memory by segment and
offset, as opposed to MVAR’s page and offset.

NOTE
The absolute addressed object cannot cross a 64KB segment boundary. For
example, you cannot access a long variable at address 0xFFFE.

216 Chapter 8. Library Reference

8

PBYTE
The PBYTE macro allows you to access individual bytes in one page of the
external data memory of the 8051. You may use this macro in your programs as
follows:

rval = PBYTE [0x0002];
PBYTE [0x0002] = 38;

to read or write the contents of the byte in pdata memory at address 0002h.

PWORD
The PWORD macro allows you to access individual words in one page of the
external data memory of the 8051. You may use this macro in your programs as
follows:

rval = PWORD [0x0002];
PWORD [0x0002] = 57;

to read or write the contents of the word in pdata memory at address 0004h
(2 × sizeof (unsigned int) = 4).

NOTE
The index used with this macro does not represent the memory address of the
integer value. To obtain the memory address, you must multiply the index by the
size of an integer (2 bytes).

C51 Compiler 217

 8

XBYTE
The XBYTE macro allows you to access individual bytes in the external data
memory of the 8051. You may use this macro in your programs as follows:

rval = XBYTE [0x0002];
XBYTE [0x0002] = 57;

to read or write the contents of the byte in external data memory at address
0002h.

XWORD
The XWORD macro allows you to access individual words in the external data
memory of the 8051. You may use this macro in your programs as follows:

rval = XWORD [2];
XWORD [2] = 57;

to read or write the contents of the word in external data memory at address
0004h (2 × sizeof (unsigned int) = 4).

NOTE
The index used with this macro does not represent the memory address of the
integer value. To obtain the memory address, you must multiply the index by the
size of an integer (2 bytes).

218 Chapter 8. Library Reference

8

Routines by Category
This sections gives a brief overview of the major categories of routines available
in the Cx51 standard library. Refer to “Reference” on page 232 for a complete
description of routine syntax and usage.

NOTE
Many of the routines in the Cx51 standard library are reentrant, intrinsic, or
both. These specifications are listed under attributes in the following tables.
Unless otherwise noted, routines are non-reentrant and non-intrinsic.

Buffer Manipulation

Routine Attributes Description

memccpy Copies data bytes from one buffer to another until a
specified character or specified number of characters has
been copied.

memchr reentrant Returns a pointer to the first occurrence of a specified
character in a buffer.

memcmp reentrant Compares a given number of characters from two different
buffers.

memcpy reentrant Copies a specified number of data bytes from one buffer
to another.

memmove reentrant Copies a specified number of data bytes from one buffer
to another.

memset reentrant Initializes a specified number of data bytes in a buffer to a
specified character value.

The buffer manipulation routines are used to work on memory buffers on a
character-by-character basis. A buffer is an array of characters like a string,
however, a buffer is usually not terminated with a null character (‘\0’). For this
reason, these routines require a buffer length or count argument.

All of these routines are implemented as functions. Function prototypes are
included in the STRING.H include file.

C51 Compiler 219

 8

Character Conversion and Classification

Routine Attributes Description

isalnum reentrant Tests for an alphanumeric character.

isalpha reentrant Tests for an alphabetic character.

iscntrl reentrant Tests for a Control character.

isdigit reentrant Tests for a decimal digit.

isgraph reentrant Tests for a printable character with the exception of space.

islower reentrant Tests for a lowercase alphabetic character.

isprint reentrant Tests for a printable character.

ispunct reentrant Tests for a punctuation character.

isspace reentrant Tests for a whitespace character.

isupper reentrant Tests for an uppercase alphabetic character.

isxdigit reentrant Tests for a hexadecimal digit.

toascii reentrant Converts a character to an ASCII code.

toint reentrant Converts a hexadecimal digit to a decimal value.

tolower reentrant Tests a character and converts it to lowercase if it is
uppercase.

_tolower reentrant Unconditionally converts a character to lowercase.

toupper reentrant Tests a character and converts it to uppercase if it is
lowercase.

_toupper reentrant Unconditionally converts a character to uppercase.

The character conversion and classification routines allow you to test individual
characters for a variety of attributes and convert characters to different formats.

The _tolower, _toupper, and toascii routines are implemented as macros. All
other routines are implemented as functions. All macro definitions and function
prototypes are found in the CTYPE.H include file.

220 Chapter 8. Library Reference

8

Data Conversion

Routine Attributes Description

abs reentrant Generates the absolute value of an integer type.

atof / atof517 Converts a string to a float.

atoi Converts a string to an int.

atol Converts a string to a long.

cabs reentrant Generates the absolute value of a character type.

labs reentrant Generates the absolute value of a long type.

strtod /
strtod517

 Converts a string to a float.

strtol Converts a string to a long.

strtoul Converts a string to an unsigned long.

The data conversion routines convert strings of ASCII characters to numbers.
All of these routines are implemented as functions and most are prototyped in
the include file STDLIB.H. The abs, cabs, and labs functions are prototyped in
the MATH.H include file. The atof517, and strtod517 function are prototyped
in the include file 80C517.H.

C51 Compiler 221

 8

Math Routines

Routine Attributes Description

acos / acos517 Calculates the arc cosine of a specified number.

asin / asin517 Calculates the arc sine of a specified number.

atan / atan517 Calculates the arc tangent of a specified number.

atan2 Calculates the arc tangent of a fraction.

ceil Finds the integer ceiling of a specified number.

cos / cos517 Calculates the cosine of a specified number.

cosh Calculates the hyperbolic cosine of a specified number.

exp / exp517 Calculates the exponential function of a specified number.

fabs reentrant Finds the absolute value of a specified number.

floor Finds the largest integer less than or equal to a specified
number.

fmod Calculates the floating-point remainder.

log / log517 Calculates the natural logarithm of a specified number.

log10 / log10517 Calculates the common logarithm of a specified number.

modf Generates integer and fractional components of a
specified number.

pow Calculates a value raised to a power.

rand reentrant Generates a pseudo random number.

sin / sin517 Calculates the sine of a specified number.

sinh Calculates the hyperbolic sine of a specified number.

srand Initializes the pseudo random number generator.

sqrt / sqrt517 Calculates the square root of a specified number.

tan / tan517 Calculates the tangent of a specified number.

tanh Calculates the hyperbolic tangent of a specified number.

chkfloat intrinsic,
reentrant

Checks the status of float numbers.

crol intrinsic,
reentrant

Rotates an unsigned char left a specified number of bits.

cror intrinsic,
reentrant

Rotates an unsigned char right a specified number of bits.

irol intrinsic,
reentrant

Rotates an unsigned int left a specified number of bits.

iror intrinsic,
reentrant

Rotates an unsigned int right a specified number of bits.

lrol intrinsic,
reentrant

Rotates an unsigned long left a specified number of bits.

lror intrinsic,
reentrant

Rotates an unsigned long right a specified number of bits.

222 Chapter 8. Library Reference

8

The math routines perform common mathematical calculations. Most of these
routines work with floating-point values and therefore include the floating-point
libraries and support routines.

All of these routines are implemented as functions. Most are prototyped in the
include file MATH.H. Functions which end in 517 (acos517, asin517, atan517,
cos517, exp517, log517, log10517, sin517, sqrt517, and tan517) are prototyped
in the 80C517.H include file. The rand and srand functions are prototyped in the
STDLIB.H include file.

The _chkfloat_, _crol_, _cror_, _irol_, _iror_, _lrol_, and _lror_ functions are
prototyped in the INTRINS.H include file.

C51 Compiler 223

 8

Memory Allocation Routines

Routine Attributes Description

calloc Allocates storage for an array from the memory pool.

free Frees a memory block that was allocated using calloc,
malloc, or realloc.

init_mempool Initializes the memory location and size of the memory
pool.

malloc Allocates a block from the memory pool.

realloc Reallocates a block from the memory pool.

The memory allocation functions provide you with a means to specify, allocate,
and free blocks of memory from a memory pool. All memory allocation
functions are implemented as functions and are prototyped in the STDLIB.H
include file.

Before using any of these functions to allocate memory, you must first specify,
using the init_mempool routine, the location and size of a memory pool from
which subsequent memory requests are satisfied.

The calloc and malloc routines allocate blocks of memory from the pool. The
calloc routine allocates an array with a specified number of elements of a given
size and initializes the array to 0. The malloc routine allocates a specified
number of bytes.

The realloc routine changes the size of an allocated block, while the free routine
returns a previously allocated memory block to the memory pool.

224 Chapter 8. Library Reference

8

Stream Input and Output Routines

Routine Attributes Description

getchar reentrant Reads and echoes a character using the _getkey and
putchar routines.

_getkey Reads a character using the 8051 serial interface.

gets Reads and echoes a character string using the getchar
routine.

printf / printf517 Writes formatted data using the putchar routine.

putchar Writes a character using the 8051 serial interface.

puts reentrant Writes a character string and newline (‘\n’) character
using the putchar routine.

scanf / scanf517 Reads formatted data using the getchar routine.

sprintf / sprintf517 Writes formatted data to a string.

sscanf / sscanf517 Reads formatted data from a string.

ungetchar Places a character back into the getchar input buffer.

vprintf Writes formatted data using the putchar function.

vsprintf Writes formatted data to a string.

The stream input and output routines allow you to read and write data to and
from the 8051 serial interface or a user-defined I/O interface. The default
_getkey and putchar functions found in the Cx51 library read and write
characters using the 8051 serial interface. You can find the source for these
functions in the LIB directory. You may modify these source files and
substitute them for the library routines. When this is done, other stream
functions then perform input and output using the new _getkey and putchar
routines.

If you want to use the existing _getkey and putchar functions, you must first
initialize the 8051 serial port. If the serial port is not properly initialized, the
default stream functions do not function. Initializing the serial port requires
manipulating special function registers SFRs of the 8051. The include file
REG51.H contains definitions for the required SFRs.

C51 Compiler 225

 8

The following example code must be executed immediately after reset, before
any stream functions are invoked.

.

.

.
#include <reg51.h>
.
.
.
SCON = 0x50; /* Setup serial port control register */

/* Mode 1: 8-bit uart var. baud rate */
/* REN: enable receiver */

PCON &= 0x7F; /* Clear SMOD bit in power ctrl reg */
/* This bit doubles the baud rate */

TMOD &= 0xCF /* Setup timer/counter mode register */
/* Clear M1 and M0 for timer 1 */

TMOD |= 0x20; /* Set M1 for 8-bit autoreload timer */

TH1 = 0xFD; /* Set autoreload value for timer 1 */
/* 9600 baud with 11.0592 MHz xtal */

TR1 = 1; /* Start timer 1 */

TI = 1; /* Set TI to indicate ready to xmit */
.
.
.

The stream routines treat input and output as streams of individual characters.
There are routines that process characters as well as functions that process
strings. Choose the routines that best suit your requirements.

All of these routines are implemented as functions. Most are prototyped in the
STDIO.H include file. The printf517, scanf517, sprintf517, and sscanf517
functions are prototyped in the 80C517.H include file.

226 Chapter 8. Library Reference

8

String Manipulation Routines

Routine Attributes Description

strcat Concatenates two strings.

strchr reentrant Returns a pointer to the first occurrence of a specified
character in a string.

strcmp reentrant Compares two strings.

strcpy reentrant Copies one string to another.

strcspn Returns the index of the first character in a string that
matches any character in a second string.

strlen reentrant Returns the length of a string.

strncat Concatenates up to a specified number of characters from
one string to another.

strncmp Compares two strings up to a specified number of
characters.

strncpy Copies up to a specified number of characters from one
string to another.

strpbrk Returns a pointer to the first character in a string that
matches any character in a second string.

strpos Reentrant Returns the index of the first occurrence of a specified
character in a string.

strrchr Reentrant Returns a pointer to the last occurrence of a specified
character in a string.

strrpbrk Returns a pointer to the last character in a string that
matches any character in a second string.

strrpos Reentrant Returns the index of the last occurrence of a specified
character in a string.

strspn Returns the index of the first character in a string that
does not match any character in a second string.

strstr Returns a pointer in a string that is identical to a second
sub-string.

The string routines are implemented as functions and are prototyped in the
STRING.H include file. They perform the following operations:

� Copying strings

� Appending one string to the end of another

� Comparing two strings

� Locating one or more characters from a specified set in a string

All string functions operate on null-terminated character strings. To work on
non-terminated strings, use the buffer manipulation routines described earlier in
this section.

C51 Compiler 227

 8

Variable-length Argument List Routines

Routine Attributes Description

va_arg reentrant Retrieves an argument from an argument list.

va_end reentrant Resets an argument pointer.

va_start reentrant Sets a pointer to the beginning of an argument list.

The variable-length argument list routines are implemented as macros and are
defined in the STDARG.H include file. These routines provide you with a
portable method of accessing arguments in a function that takes a variable
number of arguments. These macros conform to the ANSI C Standard for
variable-length argument lists.

Miscellaneous Routines

Routine Attributes Description

setjmp reentrant Saves the current stack condition and program address.

longjmp reentrant Restores the stack condition and program address.

nop intrinsic,
reentrant

Inserts an 8051 NOP instruction.

testbit intrinsic,
reentrant

Tests the value of a bit and clears it to 0.

Routines found in the miscellaneous category do not fit easily into any other
library routine category. The setjmp and longjmp routines are implemented as
functions and are prototyped in the STDJMP.H include file.

The _nop_ and _testbit_ routines direct the compiler to generate an NOP
instruction and a JBC instruction respectively. These routines are prototyped in
the INTRINS.H include file.

228 Chapter 8. Library Reference

8

Include Files
The include files that are provided with the Cx51 standard library are found in
the INC subdirectory. These files contain constant and macro definitions, type
definitions, and function prototypes. The following sections describe the use
and contents of each include file. Macros and functions included in the file are
listed as well.

8051 Special Function Register Include Files
The Cx51 compiler package provides you with a number of include files that
define manifest constants for the special function registers found on many 8051
derivatives. These files can be found in the folder KEIL\C51\INC and the
sub-folders. For example, the Special Function Registers (SFR) of the Philips
80C554 device are defined in the file KEIL\C51\INC\PHILIPS\REG554.H.

Within the µVision2 editor context menu that opens on a right mouse click in an
editor window, you can insert the SFR defintion that matches the selected
device.

SFR definition files for all 8051 variants can be downloaded from
www.keil.com. The device database available on this web page contains the
header file for the Special Function Registers file of almost all 8051 devices.

80C517.H
The 80C517.H include file contains routines that use the enhanced operational
features of the 80C517 CPU and its derivatives. These routines are:

acos517
asin517
atan517
atof517
cos517
exp517

log10517
log517
printf517
scanf517
sin517
sprintf517

sqrt517
sscanf517
strtod517
tan517

C51 Compiler 229

 8

ABSACC.H
The ABSACC.H include file contains definitions for macros that allow you to
directly access the different memory areas of the 8051.

CBYTE
CWORD
DBYTE
DWORD

FARRAY
FCARRAY
FCVAR
FVAR

PBYTE
PWORD
XBYTE
XWORD

ASSERT.H
The ASSERT.H include file defines the assert macro you can use to create test
conditions in your programs.

CTYPE.H
The CTYPE.H include file contains definitions and prototypes for routines
which classify ASCII characters and routines which perform character
conversions. The following is a list of these routines:

isalnum
isalpha
iscntrl
isdigit
isgraph
islower

isprint
ispunct
isspace
isupper
isxdigit
toascii

toint
tolower
_tolower
toupper
_toupper

INTRINS.H
The INTRINS.H include file contains prototypes for routines that instruct the
compiler to generate in-line intrinsic code.

chkfloat
crol
cror

irol
iror
lrol

lror
nop
testbit

230 Chapter 8. Library Reference

8

MATH.H
The MATH.H include file contains prototypes and definitions for all routines
that perform floating-point math calculations. Other math functions are also
included in this file. All of the math function routines are listed below:

abs
acos
asin
atan
atan2
cabs
ceil
cos
cosh

exp
fabs
floor
fmod
fprestore
fpsave
labs
log
log10

modf
pow
sin
sinh
sqrt
tan
tanh

SETJMP.H
The SETJMP.H include file defines the jmp_buf type and prototypes the setjmp
and longjmp routines which use it.

STDARG.H
The STDARG.H include file defines macros that allow you to access arguments in
functions with variable-length argument lists. The macros include:

va_arg va_end va_start

In addition, the va_list type is defined in this file.

STDDEF.H
The STDDEF.H include file defines the offsetof macro you can use to determine
the offset of members of a structure.

C51 Compiler 231

 8

STDIO.H
The STDIO.H include file contains prototypes and definitions for stream I/O
routines. They are:

getchar
_getkey
gets
printf

putchar
puts
scanf
sprintf

sscanf
ungetchar
vprintf
vsprintf

The STDIO.H include file also defines the EOF manifest constant.

STDLIB.H
The STDLIB.H include file contains prototypes and definitions for the type
conversion and memory allocation routines listed below:

atof
atoi
atol
calloc
free

init_mempool
malloc
rand
realloc
srand

strtod
strtol
strtoul

The STDLIB.H include file also defines the NULL manifest constant.

STRING.H
The STRING.H include file contains prototypes for the following string and
buffer manipulation routines:

memccpy
memchr
memcmp
memcpy
memmove
memset
strcat

strchr
strcmp
strcpy
strcspn
strlen
strncat
strncmp

strncpy
strpbrk
strpos
strrchr
strrpbrk
strrpos
strspn

The STRING.H include file also defines the NULL manifest constant.

232 Chapter 8. Library Reference

8

Reference
The following pages constitute the Cx51 standard library reference. The
routines included in the standard library are described here in alphabetical order
and each is divided into several sections:

Summary: Briefly describes the routine’s effect, lists include file(s)
containing its declaration and prototype, illustrates the
syntax, and describes any arguments.

Description: Provides you with a detailed description of the routine and
how it is used.

Return Value: Describes the value returned by the routine.

See Also: Names related routines.

Example: Gives a function or program fragment demonstrating proper
use of the function.

Keil Software — Cx51 Compiler User’s Guide 233

 8

abs

Summary: #include <math.h>
int abs (
 int val); /* number to take absolute value
of */

Description: The abs function determines the absolute value of the
integer argument val.

Return Value: The abs function returns the absolute value of val.

See Also: cabs, fabs, labs

Example: #include <math.h>
#include <stdio.h> /* for printf */

void tst_abs (void) {
int x;
int y;

x = -42;

y = abs (x);

printf ("ABS(%d) = %d\n", x, y);
}

234 Chapter 8. Library Reference

8

acos / acos517

Summary: #include <math.h>
float acos (
 float x); /* number to calculate arc
cosine of */

Description: The acos function calculates the arc cosine of the
floating-point number x. The value of x must be between
-1 and 1. The floating-point value returned by acos is a
number in the 0 to π range.

The acos517 function is identical to acos, but uses the
arithmetic unit of the Infineon C517x, C509 to provide
faster execution. When using this function, include the
header file 80C517.H. Do not use this routine with a CPU
that does not support this feature.

Return Value: The acos function returns the arc cosine of x.

See Also: asin, atan, atan2

Example: #include <math.h>
#include <stdio.h> /* for printf */

void tst_acos (void) {
float x;
float y;

for (x = -1.0; x <= 1.0; x += 0.1) {
y = acos (x);

printf ("ACOS(%f) = %f\n", x, y);
}

}

Keil Software — Cx51 Compiler User’s Guide 235

 8

asin / asin517

Summary: #include <math.h>
float asin (
 float x); /* number to calculate arc sine
of */

Description: The asin function calculates the arc sine of the
floating-point number x. The value of x must be in the
range -1 to 1. The floating-point value returned by asin is a
number in the -π/2 to π/2 range.

The asin517 function is identical to asin, but uses the
arithmetic unit of the Infineon C517x, C509 to provide
faster execution. When using this function, include the
header file 80C517.H. Do not use this routine with a CPU
that does not support this feature.

Return Value: The asin function returns the arc sine of x.

See Also: acos, atan, atan2

Example: #include <math.h>
#include <stdio.h> /* for printf */

void tst_asin (void) {
float x;
float y;

for (x = -1.0; x <= 1.0; x += 0.1) {
y = asin (x);

printf ("ASIN(%f) = %f\n", x, y);
}

}

236 Chapter 8. Library Reference

8

assert

Summary: #include <assert.h>
void assert (
 expression);

Description: The assert macro tests expression and prints a diagnostic
message using the printf library routine if it is false.

Return Value: None.

Example: #include <assert.h>
#include <stdio.h>

void check_parms (
char *string)

{
assert (string != NULL); /* check for NULL ptr */
printf ("String %s is OK\n", string);

}

Keil Software — Cx51 Compiler User’s Guide 237

 8

atan / atan517

Summary: #include <math.h>
float atan (
 float x); /* number to calculate arc
tangent of */

Description: The atan function calculates the arc tangent of the
floating-point number x. The floating-point value returned
by atan is a number in the -π/2 to π/2 range.

The atan517 function is identical to atan, but uses the
arithmetic unit of the Infineon C517x, C509 to provide
faster execution. When using this function, include the
header file 80C517.H. Do not use this routine with a CPU
that does not support this feature.

Return Value: The atan function returns the arc tangent of x.

See Also: acos, asin, atan2

Example: #include <math.h>
#include <stdio.h> /* for printf */

void tst_atan (void) {
float x;
float y;

for (x = -10.0; x <= 10.0; x += 0.1) {
y = atan (x);

printf ("ATAN(%f) = %f\n", x, y);
}

}

238 Chapter 8. Library Reference

8

atan2

Summary: #include <math.h>
float atan2 (
 float y, /* denominator for arc tangent */
 float x); /* numerator for arc tangent */

Description: The atan2 function calculates the arc tangent of the
floating-point ratio y / x. This function uses the signs of
both x and y to determine the quadrant of the return value.
The floating-point value returned by atan2 ia a number in
the -π to π range.

Return Value: The atan2 function returns the arc tangent of y / x.

See Also: acos, asin, atan

Example: #include <math.h>
#include <stdio.h> /* for printf */

void tst_atan2 () {
float x;
float y;
float z;

x = -1.0;

for (y = -10.0; y < 10.0; y += 0.1) {
z = atan2 (y,x);

printf ("ATAN2(%f/%f) = %f\n", y, x, z);
}

/* z approaches -pi as y goes from -10 to 0 */
/* z approaches +pi as y goes from +10 to 0 */

}

Keil Software — Cx51 Compiler User’s Guide 239

 8

atof / atof517

Summary: #include <stdlib.h>
float atof (
 void *string); /* string to convert */

Description: The atof function converts string into a floating-point
value. The input string is a sequence of characters that can
be interpreted as a floating-point number. This function
stops processing characters from string at the first one it
cannot recognize as part of the number.

The atof517 function is identical to atof, but uses the
arithmetic unit of the Infineon C517x, C509 to provide
faster execution. When using this function, include the
header file 80C517.H. Do not use this routine with a CPU
that does not support this feature.

The atof function requires string to have the following
format:

�{+ | -}� digits �. digits� �{e | E} �{+ | -}� digits�

where:

digits may be one or more decimal digits.

Return Value: The atof function returns the floating-point value that is
produced by interpreting the characters in string as a
number.

See Also: atoi, atol, strtod, strtol, strtoul

Example: #include <stdlib.h>
#include <stdio.h> /* for printf */

void tst_atof (void) {
float f;
char s [] = "1.23";

f = atof (s);
printf ("ATOF(%s) = %f\n", s, f);

}

240 Chapter 8. Library Reference

8

atoi

Summary: #include <stdlib.h>
int atoi (
 void *string); /* string to convert */

Description: The atoi function converts string into an integer value.
The input string is a sequence of characters that can be
interpreted as an integer. This function stops processing
characters from string at the first one it cannot recognize as
part of the number.

The atoi function requires string to have the following
format:

�whitespace� �{+ | -}� digits

where:

digits may be one or more decimal digits.

Return Value: The atoi function returns the integer value that is produced
by interpreting the characters in string as a number.

See Also: atof, atol, strtod, strtol, strtoul

Example: #include <stdlib.h>
#include <stdio.h> /* for printf */

void tst_atoi (void) {
int i;
char s [] = "12345";

i = atoi (s);
printf ("ATOI(%s) = %d\n", s, i);

}

Keil Software — Cx51 Compiler User’s Guide 241

 8

atol

Summary: #include <stdlib.h>
long atol (
 void *string); /* string to convert */

Description: The atol function converts string into a long integer value.
The input string is a sequence of characters that can be
interpreted as a long. This function stops processing
characters from string at the first one it cannot recognize as
part of the number.

The atol function requires string to have the following
format:

�whitespace� �{+ | -}� digits

where:

digits may be one or more decimal digits.

Return Value: The atol function returns the long integer value that is
produced by interpreting the characters in string as a
number.

See Also: atof, atoi, strtod, strtol, strtoul

Example: #include <stdlib.h>
#include <stdio.h> /* for printf */

void tst_atol (void) {
long l;
char s [] = "8003488051";

l = atol (s);
printf ("ATOL(%s) = %ld\n", s, l);

}

242 Chapter 8. Library Reference

8

cabs

Summary: #include <math.h>
char cabs (
 char val); /* character to take absolute value of */

Description: The cabs function determines the absolute value of the
character argument val.

Return Value: The cabs function returns the absolute value of val.

See Also: abs, fabs, labs

Example: #include <math.h>
#include <stdio.h> /* for printf */

void tst_cabs (void) {
char x;
char y;

x = -23;

y = cabs (x);

printf ("CABS(%bd) = %bd\n", x, y);
}

Keil Software — Cx51 Compiler User’s Guide 243

 8

calloc

Summary: #include <stdlib.h>
void *calloc (
 unsigned int num, /* number of items */
 unsigned int len); /* length of each item */

Description: The calloc function allocates memory for an array of num
elements. Each element in the array occupies len bytes and
is initialized to 0. The total number of bytes of memory
allocated is num × len.

NOTE
Source code is provided for this routine in the LIB
directory. You can modify the source to customize this
function for your hardware environment. Refer to
“Chapter 6. Advanced Programming Techniques” on page
149 for more information.

Return Value: The calloc function returns a pointer to the allocated
memory or a null pointer if the memory allocation request
cannot be satisfied.

See Also: free, init_mempool, malloc, realloc

Example: #include <stdlib.h>
#include <stdio.h> /* for printf */

void tst_calloc (void) {
int xdata *p; /* ptr to array of 100 ints */

p = calloc (100, sizeof (int));

if (p == NULL)
printf ("Error allocating array\n");
else
printf ("Array address is %p\n", (void *) p);

}

244 Chapter 8. Library Reference

8

ceil

Summary: #include <math.h>
float ceil (
 float val); /* number to calculate ceiling for */

Description: The ceil function calculates the smallest integer value that is
greater than or equal to val.

Return Value: The ceil function returns a float that contains the smallest
integer value that is not less than val.

See Also: floor

Example: #include <math.h>
#include <stdio.h> /* for printf */

void tst_ceil (void) {
float x;
float y;

x = 45.998;
y = ceil (x);

printf ("CEIL(%f) = %f\n", x, y);

/* output is "CEIL(45.998) = 46" */

}

Keil Software — Cx51 Compiler User’s Guide 245

 8

chkfloat

Summary: #include <intrins.h>
unsigned char _chkfloat_ (
 float val); /* number for error checking */

Description: The _chkfloat_ function checks the status of a floating-point
number.

Return Value: The _chkfloat_ function returns an unsigned char that
contains the following status information:

Return Value Meaning

0 Standard floating-point numbers

1 Floating-point value 0

2 +INF (positive overflow)
3 -INF (negative overflow)
4 NaN (Not a Number) error status

Example: #include <intrins.h>
#include <stdio.h> /* for printf */

char _chkfloat_ (float);

float f1, f2, f3;

void tst_chkfloat (void) {
f1 = f2 * f3;

switch (_chkfloat_ (f1)) {
case 0:
printf ("result is a number\n"); break;

case 1:
printf ("result is zero\n"); break;

case 2:
printf ("result is +INF\n"); break;

case 3:
printf ("result is -INF\n"); break;

case 4:
printf ("result is NaN\n"); break;

}
}

246 Chapter 8. Library Reference

8

cos / cos517

Summary: #include <math.h>
float cos (
 float x); /* number to calculate cosine
for */

Description: The cos function calculates the cosine of the floating-point
value x. The value of x must be between -65535 and
65535. Values outside this range result in an NaN error.

The cos517 function is identical to cos, but uses the
arithmetic unit of the Infineon C517x, C509 to provide
faster execution. When using this function, include the
header file 80C517.H. Do not use this routine with a CPU
that does not support this feature.

Return Value: The cos function returns the cosine for the value x.

See Also: sin, tan

Example: #include <math.h>
#include <stdio.h> /* for printf */

void tst_cos (void) {
float x;
float y;

for (x = 0; x < (2 * 3.1415); x += 0.1) {
y = cos (x);

printf ("COS(%f) = %f\n", x, y);
}

}

Keil Software — Cx51 Compiler User’s Guide 247

 8

cosh

Summary: #include <math.h>
float cosh (
 float x); /* value for hyperbolic cos
function */

Description: The cosh function calculates the hyperbolic cosine of the
floating-point value x.

Return Value: The cosh function returns the hyperbolic cosine for the
value x.

See Also: sinh, tanh

Example: #include <math.h>
#include <stdio.h> /* for printf */

void tst_cosh (void) {
float x;
float y;

for (x = 0; x < (2 * 3.1415); x += 0.1) {
y = cosh (x);

printf ("COSH(%f) = %f\n", x, y);
}

}

248 Chapter 8. Library Reference

8

crol

Summary: #include <intrins.h>
unsigned char _crol_ (
 unsigned char c, /* character to rotate left */
 unsigned char b); /* bit positions to rotate */

Description: The _crol_ routine rotates the bit pattern for the character c
left b bits. This routine is implemented as an intrinsic
function. The code required is included in-line rather than
being called.

Return Value: The _crol_ routine returns the rotated value of c.

See Also: _cror_, _irol_, _iror_, _lrol_, _lror_

Example: #include <intrins.h>

void tst_crol (void) {
char a;
char b;

a = 0xA5;

b = _crol_(a,3); /* b now is 0x2D */

}

Keil Software — Cx51 Compiler User’s Guide 249

 8

cror

Summary: #include <intrins.h>
unsigned char _cror_ (
 unsigned char c, /* character to rotate right */
 unsigned char b); /* bit positions to rotate */

Description: The _cror_ routine rotates the bit pattern for the character c
right b bits. This routine is implemented as an intrinsic
function. The code required is included in-line rather than
being called.

Return Value: The _cror_ routine returns the rotated value of c.

See Also: _crol_, _irol_, _iror_, _lrol_, _lror_

Example: #include <intrins.h>

void tst_cror (void) {
char a;
char b;

a = 0xA5;

b = _crol_(a,1); /* b now is 0xD2 */

}

250 Chapter 8. Library Reference

8

exp / exp517

Summary: #include <math.h>
float exp (
 float x); /* power to use for ex function
*/

Description: The exp function calculates the exponential function for the
floating-point value x.

The exp517 function is identical to exp, but uses the
arithmetic unit of the Infineon C517x, C509 to provide
faster execution. When using this function, include the
header file 80C517.H. Do not use this routine with a CPU
that does not support this feature.

Return Value: The exp function returns the floating-point value ex.

See Also: log, log10

Example: #include <math.h>
#include <stdio.h> /* for printf */

void tst_exp (void) {
float x;
float y;

x = 4.605170186;

y = exp (x); /* y = 100 */

printf ("EXP(%f) = %f\n", x, y);

}

Keil Software — Cx51 Compiler User’s Guide 251

 8

fabs

Summary: #include <math.h>
float fabs (
 float val); /* number to calc absolute value for */

Description: The fabs function determines the absolute value of the
floating-point number val.

Return Value: The fabs function returns the absolute value of val.

See Also: abs, cabs, labs

Example: #include <math.h>
#include <stdio.h> /* for printf */

void tst_fabs (void) {
float x;
float y;

x = 10.2;
y = fabs (x);
printf ("FABS(%f) = %f\n", x, y);

x = -3.6;
y = fabs (x);
printf ("FABS(%f) = %f\n", x, y);

}

252 Chapter 8. Library Reference

8

floor

Summary: #include <math.h>
float floor (
 float val); /* value for floor function */

Description: The floor function calculates the largest integer value that is
less than or equal to val.

Return Value: The floor function returns a float that contains the largest
integer value that is not greater than val.

See Also: ceil

Example: #include <math.h>
#include <stdio.h> /* for printf */

void tst_floor (void) {
float x;
float y;

x = 45.998;

y = floor (x);

printf ("FLOOR(%f) = %f\n", x, y); * prints 45 */
}

Keil Software — Cx51 Compiler User’s Guide 253

 8

fmod

Summary: #include <math.h>
float fmod (
 float x, /* value to calculate modulo for */
 float y); /* integer portion of modulo */

Description: The fmod function returns a value f such that f has the
same sign as x, the absolute value of f is less than the
absolute value of y, and there exists an integer k such that
k*y+f equals x. If the quotient x / y cannot be represented,
the result is undefined.

Return Value: The fmod function returns the floating-point remainder of
x / y.

Example: #include <math.h>
#include <stdio.h> /* for printf */

void tst_fmod (void) {
float f;

f = fmod (15.0, 4.0);
printf ("fmod (15.0, 4.0) = %f\n", f);

}

254 Chapter 8. Library Reference

8

free

Summary: #include <stdlib.h>
void free (
 void xdata *p); /* block to free */

Description: The free function returns a memory block to the memory
pool. The p argument points to a memory block allocated
with the calloc, malloc, or realloc functions. Once it has
been returned to the memory pool by the free function, the
block is available for subsequent allocation.

If p is a null pointer, it is ignored.

NOTE
Source code for this routine is located in the folder
\KEIL\C51\LIB. You may modify the source to customize this
function for your particular hardware environment. Refer
to “Chapter 6. Advanced Programming Techniques” on
page 149 for more information.

Return Value: None.

See Also: calloc, init_mempool, malloc, realloc

Example: #include <stdlib.h>
#include <stdio.h> /* for printf */

void tst_free (void) {
void *mbuf;

printf ("Allocating memory\n");
mbuf = malloc (1000);

if (mbuf == NULL) {
printf ("Unable to allocate memory\n");

}
else {

free (mbuf);
printf ("Memory free\n");

}

}

Keil Software — Cx51 Compiler User’s Guide 255

 8

getchar

Summary: #include <stdio.h>
char getchar (void);

Description: The getchar function reads a single character from the input
stream using the _getkey function. The character read is
then passed to the putchar function to be echoed.

NOTE
This function is implementation-specific and is based on the
operation of the _getkey and/or putchar functions. These
functions, as provided in the standard library, read and
write characters using the serial port of the 8051. Custom
functions may use other I/O devices.

Return Value: The getchar function returns the character read.

See Also: _getkey, putchar, ungetchar

Example: #include <stdio.h>

void tst_getchar (void) {
char c;

while ((c = getchar ()) != 0x1B) {
printf ("character = %c %bu %bx\n", c, c, c);

}

}

256 Chapter 8. Library Reference

8

_getkey

Summary: #include <stdio.h>
 char _getkey (void);

Description: The _getkey function waits for a character to be received
from the serial port.

NOTE
This routine is implementation-specific, and its function may
deviate from that described above. Source is included for
the _getkey and putchar functions which may be modified to
provide character level I/O for any hardware device. Refer
to “Customization Files” on page 150 for more information.

Return Value: The _getkey routine returns the received character.

See Also: getchar, putchar, ungetchar

Example: #include <stdio.h>

void tst_getkey (void) {
char c;

while ((c = _getkey ()) != 0x1B) {
printf ("key = %c %bu %bx\n", c, c, c);

}

}

Keil Software — Cx51 Compiler User’s Guide 257

 8

gets

Summary: #include <stdio.h>
char *gets (
 char *string, /* string to read */
 int len); /* maximum characters to read
*/

Description: The gets function calls the getchar function to read a line of
characters into string. The line consists of all characters up
to and including the first newline character (‘\n’). The
newline character is replaced by a null character (‘\0’) in
string.

The len argument specifies the maximum number of
characters that may be read. If len characters are read
before a newline is encountered, the gets function terminates
string with a null character and returns.

NOTE
This function is implementation-specific and is based on the
operation of the _getkey and/or putchar functions. These
functions, as provided in the standard library, read and
write characters using the serial port of the 8051. Custom
functions may use other I/O devices.

Return Value: The gets function returns string.

See Also: printf, puts, scanf

Example: #include <stdio.h>

void tst_gets (void) {
xdata char buf [100];

do {
gets (buf, sizeof (buf));
printf ("Input string \"%s\"", buf);

} while (buf [0] != '\0');
}

258 Chapter 8. Library Reference

8

init_mempool

Summary: #include <stdlib.h>
void init_mempool (
 void xdata *p, /* start of memory pool */
 unsigned int size); /* length of memory pool */

Description: The init_mempool function initializes the memory
management routines and provides the starting address and
size of the memory pool. The p argument points to a
memory area in xdata which is managed using the calloc,
free, malloc, and realloc library functions. The size
argument specifies the number of bytes to use for the
memory pool.

NOTE
This function must be used to setup the memory pool before
any other memory management functions (calloc, free,
malloc, realloc) can be called. Call the init_mempool
function only once at the beginning of your program.

Source code is provided for this routine in the folder
\KEIL\C51\LIB. You can modify the source to customize this
function for your hardware environment. Refer to
“Chapter 6. Advanced Programming Techniques” on page
149 for more information.

Return Value: None.

See Also: calloc, free, malloc, realloc

Example: #include <stdlib.h>

void tst_init_mempool (void) {
xdata void *p;
int i;

init_mempool (&XBYTE [0x2000], 0x1000);
/* initialize memory pool at xdata 0x2000

for 4096 bytes */

p = malloc (100);
for (i = 0; i < 100; i++) ((char *) p)[i] = i;
free (p);

}

Keil Software — Cx51 Compiler User’s Guide 259

 8

irol

Summary: #include <intrins.h>
unsigned int _irol_ (
 unsigned int i, /* integer to rotate left */
 unsigned char b); /* bit positions to rotate */

Description: The _irol_ routine rotates the bit pattern for the integer i
left b bits. This routine is implemented as an intrinsic
function. The code required is included in-line rather than
being called.

Return Value: The _irol_ routine returns the rotated value of i.

See Also: _cror_, _crol_, _iror_, _lrol_, _lror_

Example: #include <intrins.h>

void tst_irol (void) {
int a;
int b;

a = 0xA5A5;

b = _irol_(a,3); /* b now is 0x2D2D */

}

260 Chapter 8. Library Reference

8

iror

Summary: #include <intrins.h>
unsigned int _iror_ (
 unsigned int i, /* integer to rotate right */
 unsigned char b); /* bit positions to rotate */

Description: The _iror_ routine rotates the bit pattern for the integer i
right b bits. This routine is implemented as an intrinsic
function. The code required is included in-line rather than
being called.

Return Value: The _iror_ routine returns the rotated value of i.

See Also: _cror_, _crol_, _irol_, _lrol_, _lror_

Example: #include <intrins.h>

void tst_iror (void) {
int a;
int b;

a = 0xA5A5;

b = _irol_(a,1); /* b now is 0xD2D2 */

}

Keil Software — Cx51 Compiler User’s Guide 261

 8

isalnum

Summary: #include <ctype.h>
bit isalnum (
 char c); /* character to test */

Description: The isalnum function tests c to determine if it is an
alphanumeric character (‘A’-‘Z’, ‘a’-‘z’, ‘0’-‘9’).

Return Value: The isalnum function returns a value of 1 if c is an
alphanumeric character or a value of 0 if it is not.

See Also: isalpha, iscntrl, isdigit, isgraph, islower, isprint, ispunct,
isspace, isupper, isxdigit

Example: #include <ctype.h>
#include <stdio.h> /* for printf */

void tst_isalnum (void) {
unsigned char i;
char *p;

for (i = 0; i < 128; i++) {
p = (isalnum (i) ? "YES" : "NO");

printf ("isalnum (%c) %s\n", i, p);
}

}

262 Chapter 8. Library Reference

8

isalpha

Summary: #include <ctype.h>
bit isalpha (
 char c); /* character to test */

Description: The isalpha function tests c to determine if it is an
alphabetic character (‘A’-‘Z’ or ‘a’-‘z’).

Return Value: The isalpha function returns a value of 1 if c is an
alphabetic character and a value of 0 if it is not.

See Also: isalnum, iscntrl, isdigit, isgraph, islower, isprint, ispunct,
isspace, isupper, isxdigit

Example: #include <ctype.h>
#include <stdio.h> /* for printf */

void tst_isalpha (void) {
unsigned char i;
char *p;

for (i = 0; i < 128; i++) {
p = (isalpha (i) ? "YES" : "NO");

printf ("isalpha (%c) %s\n", i, p);
}

}

Keil Software — Cx51 Compiler User’s Guide 263

 8

iscntrl

Summary: #include <ctype.h>
bit iscntrl (
 char c); /* character to test */

Description: The iscntrl function tests c to determine if it is a control
character (0x00-0x1F or 0x7F).

Return Value: The iscntrl function returns a value of 1 if c is a control
character and a value of 0 if it is not.

See Also: isalnum, isalpha, isdigit, isgraph, islower, isprint,
ispunct, isspace, isupper, isxdigit

Example: #include <ctype.h>
#include <stdio.h> /* for printf */

void tst_iscntrl (void) {
unsigned char i;
char *p;

for (i = 0; i < 128; i++) {
p = (iscntrl (i) ? "YES" : "NO");

printf ("iscntrl (%c) %s\n", i, p);
}

}

264 Chapter 8. Library Reference

8

isdigit

Summary: #include <ctype.h>
bit isdigit (
 char c); /* character to test */

Description: The isdigit function tests c to determine if it is a decimal
digit (‘0’-‘9’).

Return Value: The isdigit function returns a value of 1 if c is a decimal
digit and a value of 0 if it is not.

See Also: isalnum, isalpha, iscntrl, isgraph, islower, isprint,
ispunct, isspace, isupper, isxdigit

Example: #include <ctype.h>
#include <stdio.h> /* for printf */

void tst_isdigit (void) {
unsigned char i;
char *p;

for (i = 0; i < 128; i++) {
p = (isdigit (i) ? "YES" : "NO");

printf ("isdigit (%c) %s\n", i, p);
}

}

Keil Software — Cx51 Compiler User’s Guide 265

 8

isgraph

Summary: #include <ctype.h>
bit isgraph (
 char c); /* character to test */

Description: The isgraph function tests c to determine if it is a printable
character (not including space). The character values tested
for are 0x21-0x7E.

Return Value: The isgraph function returns a value of 1 if c is a printable
character and a value of 0 if it is not.

See Also: isalnum, isalpha, iscntrl, isdigit, islower, isprint, ispunct,
isspace, isupper, isxdigit

Example: #include <ctype.h>
#include <stdio.h> /* for printf */

void tst_isgraph (void) {
unsigned char i;
char *p;

for (i = 0; i < 128; i++) {
p = (isgraph (i) ? "YES" : "NO");

printf ("isgraph (%c) %s\n", i, p);
}

}

266 Chapter 8. Library Reference

8

islower

Summary: #include <ctype.h>
bit islower (
 char c); /* character to test */

Description: The islower function tests c to determine if it is a
lowercase alphabetic character (‘a’-‘z’).

Return Value: The islower function returns a value of 1 if c is a lowercase
letter and a value of 0 if it is not.

See Also: isalnum, isalpha, iscntrl, isdigit, isgraph, isprint, ispunct,
isspace, isupper, isxdigit

Example: #include <ctype.h>
#include <stdio.h> /* for printf */

void tst_islower (void) {
unsigned char i;
char *p;

for (i = 0; i < 128; i++) {
p = (islower (i) ? "YES" : "NO");

printf ("islower (%c) %s\n", i, p);
}

}

Keil Software — Cx51 Compiler User’s Guide 267

 8

isprint

Summary: #include <ctype.h>
bit isprint (
 char c); /* character to test */

Description: The isprint function tests c to determine if it is a printable
character (0x20-0x7E).

Return Value: The isprint function returns a value of 1 if c is a printable
character and a value of 0 if it is not.

See Also: isalnum, isalpha, iscntrl, isdigit, isgraph, islower,
ispunct, isspace, isupper, isxdigit

Example: #include <ctype.h>
#include <stdio.h> /* for printf */

void tst_isprint (void) {
unsigned char i;
char *p;

for (i = 0; i < 128; i++) {
p = (isprint (i) ? "YES" : "NO");

printf ("isprint (%c) %s\n", i, p);
}

}

268 Chapter 8. Library Reference

8

ispunct

Summary: #include <ctype.h>
bit ispunct (
 char c); /* character to test */

Description: The ispunct function tests c to determine if it is a
punctuation character. The following symbols are
punctuation characters:

! " # $ % & ' (
) * + , - . / :
; < = > ? @ [\
] ^ _ ` { | } ~

Return Value: The ispunct function returns a value of 1 if c is a
punctuation character and a value of 0 if it is not.

See Also: isalnum, isalpha, iscntrl, isdigit, isgraph, islower, isprint,
isspace, isupper, isxdigit

Example: #include <ctype.h>
#include <stdio.h> /* for printf */

void tst_ispunct (void) {
unsigned char i;
char *p;

for (i = 0; i < 128; i++) {
p = (ispunct (i) ? "YES" : "NO");

printf ("ispunct (%c) %s\n", i, p);
}

}

Keil Software — Cx51 Compiler User’s Guide 269

 8

isspace

Summary: #include <ctype.h>
bit isspace (
 char c); /* character to test */

Description: The isspace function tests c to determine if it is a
whitespace character (0x09-0x0D or 0x20).

Return Value: The isspace function returns a value of 1 if c is a
whitespace character and a value of 0 if it is not.

See Also: isalnum, isalpha, iscntrl, isdigit, isgraph, islower, isprint,
ispunct, isupper, isxdigit

Example: #include <ctype.h>
#include <stdio.h> /* for printf */

void tst_isspace (void) {
unsigned char i;
char *p;

for (i = 0; i < 128; i++) {
p = (isspace (i) ? "YES" : "NO");

printf ("isspace (%c) %s\n", i, p);
}

}

270 Chapter 8. Library Reference

8

isupper

Summary: #include <ctype.h>
bit isupper (
 char c); /* character to test */

Description: The isupper function tests c to determine if it is an
uppercase alphabetic character (‘A’-‘Z’).

Return Value: The isupper function returns a value of 1 if c is an
uppercase character and a value of 0 if it is not.

See Also: isalnum, isalpha, iscntrl, isdigit, isgraph, islower, isprint,
ispunct, isspace, isxdigit

Example: #include <ctype.h>
#include <stdio.h> /* for printf */

void tst_isupper (void) {
unsigned char i;
char *p;

for (i = 0; i < 128; i++) {
p = (isupper (i) ? "YES" : "NO");

printf ("isupper (%c) %s\n", i, p);
}

}

Keil Software — Cx51 Compiler User’s Guide 271

 8

isxdigit

Summary: #include <ctype.h>
bit isxdigit (
 char c); /* character to test */

Description: The isxdigit function tests c to determine if it is a
hexadecimal digit (‘A’-‘Z’, ‘a’-‘z’, ‘0’-‘9’).

Return Value: The isxdigit function returns a value of 1 if c is a
hexadecimal digit and a value of 0 if it is not.

See Also: isalnum, isalpha, iscntrl, isdigit, isgraph, islower, isprint,
ispunct, isspace, isupper

Example: #include <ctype.h>
#include <stdio.h> /* for printf */

void tst_isxdigit (void) {
unsigned char i;
char *p;

for (i = 0; i < 128; i++) {
p = (isxdigit (i) ? "YES" : "NO");

printf ("isxdigit (%c) %s\n", i, p);
}

}

272 Chapter 8. Library Reference

8

labs

Summary: #include <math.h>
long labs (
 long val); /* value to calc. abs. value for */

Description: The labs function determines the absolute value of the long
integer val.

Return Value: The labs function returns the absolute value of val.

See Also: abs, cabs, fabs

Example: #include <math.h>
#include <stdio.h> /* for printf */

void tst_labs (void) {
long x;
long y;

x = -12345L;

y = labs (x);

printf ("LABS(%ld) = %ld\n", x, y);

}

Keil Software — Cx51 Compiler User’s Guide 273

 8

log / log517

Summary: #include <math.h>
float log (
 float val); /* value to take natural logarithm of */

Description: The log function calculates the natural logarithm for the
floating-point number val. The natural logarithm uses the
base e or 2.718282…

The log517 function is identical to log, but uses the
arithmetic unit of the Infineon C517x, C509 to provide
faster execution. When using this function, include the
header file 80C517.H. Do not use this routine with a CPU
that does not support this feature.

Return Value: The log function returns the floating-point natural logarithm
of val.

See Also: exp, log10

Example: #include <math.h>
#include <stdio.h> /* for printf */

void tst_log (void) {
float x;
float y;

x = 2.71838;
x *= x;

y = log (x); /* y = 2 */

printf ("LOG(%f) = %f\n", x, y);

}

274 Chapter 8. Library Reference

8

log10 / log10517

Summary: #include <math.h>
float log10 (
 float val); /* value to take common logarithm of */

Description: The log10 function calculates the common logarithm for the
floating-point number val. The common logarithm uses
base 10.

The log10517 function is identical to log10, but uses the
arithmetic unit of the Infineon C517x, C509 to provide
faster execution. When using this function, include the
header file 80C517.H. Do not use this routine with a CPU
that does not support this feature.

Return Value: The log10 function returns the floating-point common
logarithm of val.

See Also: exp, log

Example: #include <math.h>
#include <stdio.h> /* for printf */

void tst_log10 (void) {
float x;
float y;

x = 1000;

y = log10 (x); /* y = 3 */

printf ("LOG10(%f) = %f\n", x, y);

}

Keil Software — Cx51 Compiler User’s Guide 275

 8

longjmp

Summary: #include <setjmp.h>
void longjmp (
 jmp_buf env, /* environment to restore */
 int retval); /* return value */

Description: The longjmp function restores the state which was
previously stored in env by the setjmp function. The
retval argument specifies the value to return from the
setjmp function call.

The longjmp and setjmp functions can be used to execute a
non-local goto and are usually utilized to pass control to an
error recovery routine.

Local variables and function arguments are restored only if
declared with the volatile attribute.

Return Value: None.

See Also: setjmp

276 Chapter 8. Library Reference

8

Example: #include <setjmp.h>
#include <stdio.h> /* for printf */

jmp_buf env; /* jump environment (must be global) */
bit error_flag;

void trigger (void) {
.
.
.
/* put processing code here */
.
.
.
if (error_flag != 0) {
longjmp (env, 1); /* return 1 to setjmp */

}
.
.
.

}

void recover (void) {
/* put recovery code here */

}

void tst_longjmp (void) {
.
.
.
if (setjmp (env) != 0) { /* setjmp returns a 0 */
printf ("LONGJMP called\n");
recover ();

}
else {
printf ("SETJMP called\n");

error_flag = 1; /* force an error */

trigger ();
}

}

Keil Software — Cx51 Compiler User’s Guide 277

 8

lrol

Summary: #include <intrins.h>
unsigned long _lrol_ (
 unsigned long l, /* 32-bit integer to rotate left */
 unsigned char b); /* bit positions to rotate */

Description: The _lrol_ routine rotates the bit pattern for the long integer
l left b bits. This routine is implemented as an intrinsic
function. The code required is included in-line rather than
being called.

Return Value: The _lrol_ routine returns the rotated value of l.

See Also: _cror_, _crol_, _irol_, _iror_, _lror_

Example: #include <intrins.h>

void tst_lrol (void) {
long a;
long b;

a = 0xA5A5A5A5;

b = _lrol_(a,3); /* b now is 0x2D2D2D2D */

}

278 Chapter 8. Library Reference

8

lror

Summary: #include <intrins.h>
unsigned long _lror_ (
 unsigned long l, /* 32-bit int to rotate right */
 unsigned char b); /* bit positions to rotate */

Description: The _lror_ routine rotates the bit pattern for the long integer
l right b bits. This routine is implemented as an intrinsic
function. The code required is included in-line rather than
being called.

Return Value: The _lror_ routine returns the rotated value of l.

See Also: _cror_, _crol_, _irol_, _iror_, _lrol_

Example: #include <intrins.h>

void tst_lror (void) {
long a;
long b;

a = 0xA5A5A5A5;

b = _lrol_(a,1); /* b now is 0xD2D2D2D2 */

}

Keil Software — Cx51 Compiler User’s Guide 279

 8

malloc

Summary: #include <stdlib.h>
void *malloc (
 unsigned int size); /* block size to allocate */

Description: The malloc function allocates a memory block from the
memory pool of size bytes in length.

NOTE
Source code is provided for this routine in the \KEIL\C51\ LIB
directory. You may modify the source to customize this
function for your hardware environment. Refer to
“Chapter 6. Advanced Programming Techniques” on page
149 for more information.

Return Value: The malloc function returns a pointer to the allocated block
or a null pointer if there was not enough memory to satisfy
the allocation request.

See Also: calloc, free, init_mempool, realloc

Example: #include <stdlib.h>
#include <stdio.h> /* for printf */

void tst_malloc (void) {
unsigned char xdata *p;

p = malloc (1000); /* allocate 1000 bytes */

if (p == NULL)
printf ("Not enough memory space\n");
else
printf ("Memory allocated\n");

}

280 Chapter 8. Library Reference

8

memccpy

Summary: #include <string.h>
void *memccpy (
 void *dest, /* destination buffer */
 void *src, /* source buffer */
 char c, /* character which ends copy */
 int len); /* maximum bytes to copy */

Description: The memccpy function copies 0 or more characters from
src to dest. Characters are copied until the character c is
copied or until len bytes have been copied, whichever
comes first.

Return Value: The memccpy function returns a pointer to the byte in dest
that follows the last character copied or a null pointer if the
last character copied was c.

See Also: memchr, memcmp, memcpy, memmove, memset

Example: #include <string.h>
#include <stdio.h> /* for printf */

void tst_memccpy (void) {
static char src1 [100] = "Copy this string

to dst1";
static char dst1 [100];

void *c;

c = memccpy (dst1, src1, 'g', sizeof (dst1));

if (c == NULL)
printf ("'g' was not found in the src

buffer\n");
else
printf ("characters copied up to 'g'\n");

}

Keil Software — Cx51 Compiler User’s Guide 281

 8

memchr

Summary: #include <string.h>
void *memchr (
 void *buf, /* buffer to search */
 char c, /* byte to find */
 int len); /* maximum buffer length */

Description: The memchr function scans buf for the character c in the
first len bytes of the buffer.

Return Value: The memchr function returns a pointer to the character c
in buf or a null pointer if the character was not found.

See Also: memccpy, memcmp, memcpy, memmove, memset

Example: #include <string.h>
#include <stdio.h> /* for printf */

void tst_memchr (void) {
static char src1 [100] =
"Search this string from the start";

void *c;

c = memchr (src1, 'g', sizeof (src1));

if (c == NULL)
printf ("'g' was not found in the buffer\n");

else
printf ("found 'g' in the buffer\n");

}

282 Chapter 8. Library Reference

8

memcmp

Summary: #include <string.h>
char memcmp (
 void *buf1, /* first buffer */
 void *buf2, /* second buffer */
 int len); /* maximum bytes to compare
*/

Description: The memcmp function compares two buffers buf1 and
buf2 for len bytes and returns a value indicating their
relationship as follows:

Value Meaning

< 0 buf1 less than buf2
= 0 but1 equal to buf2
> 0 buf1 greater than buf2

Return Value: The memcmp function returns a positive, negative, or zero
value indicating the relationship of buf1 and buf2.

See Also: memccpy, memchr, memcpy, memmove, memset

Example: #include <string.h>
#include <stdio.h> /* for printf */

void tst_memcmp (void) {
static char hexchars [] = "0123456789ABCDEF";
static char hexchars2 [] = "0123456789abcdef";

char i;

i = memcmp (hexchars, hexchars2, 16);

if (i < 0)
printf ("hexchars < hexchars2\n");

else if (i > 0)
printf ("hexchars > hexchars2\n");

else
printf ("hexchars == hexchars2\n");

}

Keil Software — Cx51 Compiler User’s Guide 283

 8

memcpy

Summary: #include <string.h>
void *memcpy (
 void *dest, /* destination buffer */
 void *src, /* source buffer */
 int len); /* maximum bytes to copy */

Description: The memcpy function copies len bytes from src to dest.
If these memory buffers overlap, the memcpy function
cannot guarantee that bytes in src are copied to dest
before being overwritten. If these buffers do overlap, use
the memmove function.

Return Value: The memcpy function returns dest.

See Also: memccpy, memchr, memcmp, memmove, memset

Example: #include <string.h>
#include <stdio.h> /* for printf */

void tst_memcpy (void) {
static char src1 [100] =
"Copy this string to dst1";

static char dst1 [100];

char *p;

p = memcpy (dst1, src1, sizeof (dst1));

printf ("dst = \"%s\"\n", p);

}

284 Chapter 8. Library Reference

8

memmove

Summary: #include <string.h>
void *memmove (
 void *dest, /* destination buffer */
 void *src, /* source buffer */
 int len); /* maximum bytes to move */

Description: The memmove function copies len bytes from src to
dest. If these memory buffers overlap, the memmove
function ensures that bytes in src are copied to dest before
being overwritten.

Return Value: The memmove function returns dest.

See Also: memccpy, memchr, memcmp, memcpy, memset

Example: #include <string.h>
#include <stdio.h> /* for printf */

void tst_memmove (void) {
static char buf [] = "This is line 1 "

"This is line 2 "
"This is line 3 ";

printf ("buf before = %s\n", buf);

memmove (&buf [0], &buf [16], 32);

printf ("buf after = %s\n", buf);

}

Keil Software — Cx51 Compiler User’s Guide 285

 8

memset

Summary: #include <string.h>
void *memset (
 void *buf, /* buffer to initialize */
 char c, /* byte value to set */
 int len); /* buffer length */

Description: The memset function sets the first len bytes in buf to c.

Return Value: The memset function returns dest.

See Also: memccpy, memchr, memcmp, memcpy, memmove

Example: #include <string.h>
#include <stdio.h> /* for printf */

void tst_memset (void) {
char buf [10];

memset (buf, '\0', sizeof (buf));
/* fill buffer with null characters */

}

286 Chapter 8. Library Reference

8

modf

Summary: #include <math.h>
float modf (
 float val, /* value to calculate modulo for */
 float *ip); /* integer portion of modulo */

Description: The modf function splits the floating-point number val into
integer and fractional components. The fractional part of
val is returned as a signed floating-point number. The
integer part is stored as a floating-point number at ip.

Return Value: The modf function returns the signed fractional part of val.

Example: #include <math.h>
#include <stdio.h> /* for printf */

void tst_modf (void) {
float x;
float int_part, frc_part;

x = 123.456;

frc_part = modf (x, &int_part);

printf ("%f = %f + %f\n", x, int_part,frc_part);

}

Keil Software — Cx51 Compiler User’s Guide 287

 8

nop

Summary: #include <intrins.h>
void _nop_ (void);

Description: The _nop_ routine inserts an 8051 NOP instruction into the
program. This routine can be used to pause for 1 CPU
cycle. This routine is implemented as an intrinsic function.
The code required is included in-line rather than being
called.

Return Value: None.

Example: #include <intrins.h>
#include <stdio.h> /* for printf */

void tst_nop (void) {

P1 = 0xFF;

nop (); /* delay for hardware */
nop ();
nop ();

P1 = 0x00;

}

288 Chapter 8. Library Reference

8

offsetof

Summary: #include <stddef.h>
int offsetof (
 structure, /* structure to use */
 member); /* member to get offset for */

Description: The offsetof macro calculates the offset of the member
structure element from the beginning of the structure. The
structure argument must specify the name of a structure.
The member argument must specify the name of a member
of the structure.

Return Value: The offsetof macro returns the offset, in bytes, of the
member element from the beginning of struct structure.

Example: #include <stddef.h>

struct index_st
{
unsigned char type;
unsigned long num;
unsigned ing len;
};

typedef struct index_st index_t;

void main (void)
{
int x, y;

x = offsetof (struct index_st, len); /* x = 5 */
y = offsetof (index_t, num); /* x = 1 */
}

Keil Software — Cx51 Compiler User’s Guide 289

 8

pow

Summary: #include <math.h>
float pow (
 float x, /* value to use for base */
 float y); /* value to use for exponent */

Description: The pow function calculates x raised to the yth power.

Return Value: The pow function returns the value xy. If x ≠ 0 and y = 0,
pow returns a value of 1. If x = 0 and y ≤ 0, pow returns
NaN. If x < 0 and y is not an integer, pow returns NaN.

See Also: sqrt

Example: #include <math.h>
#include <stdio.h> /* for printf */

void tst_pow (void) {
float base;
float power;
float y;

base = 2.0;
power = 8.0;

y = pow (base, power); /* y = 256 */

printf ("%f ^ %f = %f\n", base, power, y);

}

290 Chapter 8. Library Reference

8

printf / printf517

Summary: #include <stdio.h>
int printf (
 const char *fmtstr /* format string */
 �, arguments�…); /* additional arguments */

Description: The printf function formats a series of strings and numeric
values and builds a string to write to the output stream using
the putchar function. The fmtstr argument is a format
string and may be composed of characters, escape
sequences, and format specifications.

Ordinary characters and escape sequences are copied to the
stream in the order in which they are interpreted. Format
specifications always begin with a percent sign (‘%’) and
require additional arguments to be included in the function
call.

The format string is read from left to right. The first format
specification encountered references the first argument after
fmtstr and converts and outputs it using the format
specification. The second format specification accesses the
second argument after fmtstr, and so on. If there are more
arguments than format specifications, the extra arguments
are ignored. Results are unpredictable if there are not
enough arguments for the format specifications.

Format specifications have the following format:

% �flags� �width� �. precision� �{b | B | l | L}� type

Each field in the format specification can be a single
character or a number which specifies a particular format
option.

Keil Software — Cx51 Compiler User’s Guide 291

 8

 The type field is a single character that specifies whether
the argument is interpreted as a character, string, number, or
pointer, as shown in the following table.

Character Argument Type Output Format

d int Signed decimal number

u unsigned int Unsigned decimal number

o unsigned int Unsigned octal number

x unsigned int Unsigned hexadecimal number
using “0123456789abcdef”

X unsigned int Unsigned hexadecimal number
using “0123456789ABCEDF”

f float Floating-point number using the
format [-]dddd.dddd

e float Floating-point number using the
format [-]d.dddde[-]dd

E float Floating-point number using the
format [-]d.ddddE[-]dd

g float Floating-point number using either e
or f format, whichever is more
compact for the specified value and
precision

G float Identical to the g format except that
(where applicable) E precedes the
exponent instead of e

c char Single character

s generic * String with a terminating null
character

p generic * Pointer using the format t:aaaa
where t is the memory type the
pointer references (c: code,
i: data/idata, x: xdata, p: pdata) and
aaaa is the hexadecimal address

The optional characters b or B and l or L may immediately
precede the type character to respectively specify char or
long versions of the integer types d, i, u, o, x, and X.

292 Chapter 8. Library Reference

8

The flags field is a single character used to justify the
output and to print +/- signs and blanks, decimal points, and
octal and hexadecimal prefixes, as shown in the following
table.

Flag Meaning

- Left justify the output in the specified field width.

+ Prefix the output value with a + or - sign if the output is a
signed type.

blank (‘ ’) Prefix the output value with a blank if it is a signed positive
value. Otherwise, no blank is prefixed.

Prefixes a non-zero output value with 0, 0x, or 0X when
used with o, x, and X field types, respectively.

When used with the e, E, f, g, and G field types, the # flag
forces the output value to include a decimal point.

The # flag is ignored in all other cases.

* Ignore format specifier.

The width field is a non-negative number that specifies the
minimum number of characters printed. If the number of
characters in the output value is less than width, blanks are
added on the left or right (when the - flag is specified) to pad
to the minimum width. If width is prefixed with a ‘0’,
zeros are padded instead of blanks. The width field never
truncates a field. If the length of the output value exceeds
the specified width, all characters are output.

The width field may be an asterisk (‘*’), in which case an
int argument from the argument list provides the width
value. Specifying a ‘b’ in front of the asterisk specifies that
the argument used is an unsigned char.

Keil Software — Cx51 Compiler User’s Guide 293

 8

The precision field is a non-negative number that specifies
the number of characters to print, the number of significant
digits, or the number of decimal places. The precision
field can cause truncation or rounding of the output value in
the case of a floating-point number as specified in the
following table.

Type Meaning of Precision Field

d, u, o, x, X The precision field is where you specify the minimum
number of digits that are included in the output value.
Digits are not truncated if the number of digits in the
argument exceeds that defined in the precision field. If
the number of digits in the argument is less than the
precision field, the output value is padded on the left with
zeros.

f The precision field is where you specify the number of
digits to the right of the decimal point. The last digit is
rounded.

e, E The precision field is where you specify the number of
digits to the right of the decimal point. The last digit is
rounded.

g, G The precision field is where you specify the maximum
number of significant digits in the output value.

c, p The precision field has no effect on these field types.

s The precision field is where you specify the maximum
number of characters in the output value. Excess
characters are not output.

The precision field may be an asterisk (‘*’), in which case
an int argument from the argument list provides the value
for the precision. Specifying a ‘b’ in front of the asterisk
specifies that the argument used is an unsigned char.

The printf517 function is identical to printf, but uses the
arithmetic unit of the Infineon C517x, C509 to provide
faster execution. When using this function, include the
header file 80C517.H. Do not use this routine with a CPU
that does not support this feature.

294 Chapter 8. Library Reference

8

NOTE
This function is implementation-specific and is based on the
operation of the putchar function. This function, as
provided in the standard library, writes characters using the
serial port of the 8051. Custom functions may use other I/O
devices.

You must ensure that the argument type matches that of the
format specification. You can use type casts to ensure that
the proper type is passed to printf.

The total number of bytes that may be passed to printf is
limited due to the memory restrictions imposed by the 8051.
A maximum of 15 bytes may be passed in SMALL model or
COMPACT model. A maximum of 40 bytes may be passed
in LARGE model.

Return Value: The printf function returns the number of characters
actually written to the output stream.

See Also: gets, puts, scanf, sprintf, sscanf, vprintf, vsprintf

Keil Software — Cx51 Compiler User’s Guide 295

 8

Example: #include <stdio.h>

void tst_printf (void) {
char a;
int b;
long c;
unsigned char x;
unsigned int y;
unsigned long z;
float f,g;
char buf [] = "Test String";
char *p = buf;

a = 1;
b = 12365;
c = 0x7FFFFFFF;
x = 'A';
y = 54321;
z = 0x4A6F6E00;
f = 10.0;
g = 22.95;

printf ("char %bd int %d long %ld\n",a,b,c);
printf ("Uchar %bu Uint %u Ulong %lu\n",x,y,z);
printf ("xchar %bx xint %x xlong %lx\n",x,y,z);
printf ("String %s is at address %p\n",buf,p);
printf ("%f != %g\n", f, g);
printf ("%*f != %*g\n", 8, f, 8, g);

}

296 Chapter 8. Library Reference

8

putchar

Summary: #include <stdio.h>
char putchar (
 char c); /* character to output */

Description: The putchar function transmits the character c using the
8051 serial port.

NOTE
This routine is implementation-specific and its function may
deviate from that described above. Source is included for
the _getkey and putchar functions which may be modified to
provide character level I/O for any hardware device. Refer
to “Customization Files” on page 150 for more information.

Return Value: The putchar routine returns the character output, c.

See Also: getchar, _getkey, ungetchar

Example: #include <stdio.h>

void tst_putchar (void) {
unsigned char i;

for (i = 0x20; i < 0x7F; i++)
putchar (i);

}

Keil Software — Cx51 Compiler User’s Guide 297

 8

puts

Summary: #include <stdio.h>
int puts (
 const char *string); /* string to output */

Description: The puts function writes string followed by a newline
character (‘\n’) to the output stream using the putchar
function.

NOTE
This function is implementation-specific and is based on the
operation of the putchar function. This function, as
provided in the standard library, writes characters using the
serial port of the 8051. Custom functions may use other I/O
devices.

Return Value: The puts function returns EOF if an error occurred and a
value of 0 if no errors were encountered.

See Also: gets, printf, scanf

Example: #include <stdio.h>

void tst_puts (void) {

puts ("Line #1");
puts ("Line #2");
puts ("Line #3");

}

298 Chapter 8. Library Reference

8

rand

Summary: #include <stdlib.h>
int rand (void);

Description: The rand function generates a pseudo-random number
between 0 and 32767.

Return Value: The rand function returns a pseudo-random number.

See Also: srand

Example: #include <stdlib.h>
#include <stdio.h> /* for printf */

void tst_rand (void) {
int i;
int r;

for (i = 0; i < 10; i++) {
printf ("I = %d, RAND = %d\n", i, rand ());

}

}

Keil Software — Cx51 Compiler User’s Guide 299

 8

realloc

Summary: #include <stdlib.h>
void *realloc (
 void xdata *p, /* previously allocated block */
 unsigned int size); /* new size for block */

Description: The realloc function changes the size of a previously
allocated memory block. The p argument points to the
allocated block and the size argument specifies the new
size for the block. The contents of the existing block are
copied to the new block. Any additional area in the new
block, due to a larger block size, is not initialized.

NOTE
Source code is provided for this routine in the folder
\KEIL\C51\LIB. You can modify the source to customize this
function for your hardware environment. Refer to
“Chapter 6. Advanced Programming Techniques” on page
149 for more information.

Return Value: The realloc function returns a pointer to the new block. If
there is not enough memory in the memory pool to satisfy
the memory request, a null pointer is returned and the
original memory block is not affected.

See Also: calloc, free, init_mempool, malloc

Example: #include <stdlib.h>
#include <stdio.h> /* for printf */

void tst_realloc (void) {
void xdata *p;
void xdata *new_p;

p = malloc (100);
if (p != NULL) {
new_p = realloc (p, 200);

if (new_p != NULL) p = new_p;
else printf ("Reallocation failed\n");

}
}

300 Chapter 8. Library Reference

8

scanf

Summary: #include <stdio.h>
int scanf (
 const char *fmtstr /* format string */
 �, argument�…); /* additional arguments */

Description: The scanf function reads data using the getchar routine.
Data input are stored in the locations specified by argument
according to the format string fmtstr. Each argument must
be a pointer to a variable that corresponds to the type
defined in fmtstr which controls the interpretation of the
input data. The fmtstr argument is composed of one or
more whitespace characters, non-whitespace characters, and
format specifications as defined below.

The scanf517 function is identical to scanf, but uses the
arithmetic unit of the Infineon C517x, C509 to provide
faster execution. When using this function include the
header file 80C517.H. Do not use this routine with a CPU
that does not support this feature.

� Whitespace characters, blank (‘ ’), tab (‘\t’), or newline
(‘\n’), causes scanf to skip whitespace characters in the
input stream. A single whitespace character in the format
string matches 0 or more whitespace characters in the
input stream.

� Non-whitespace characters, with the exception of the
percent sign (‘%’), cause scanf to read but not store a
matching character from the input stream. The scanf
function terminates if the next character in the input
stream does not match the specified non-whitespace
character.

� Format specifications begin with a percent sign (‘%’)
and cause scanf to read and convert characters from the
input stream to the specified type values. The converted
value is stored to an argument in the parameter list.
Characters following a percent sign that are not
recognized as a format specification are treated as an
ordinary character. For example, %% matches a single
percent sign in the input stream.

Keil Software — Cx51 Compiler User’s Guide 301

 8

 The format string is read from left to right. Characters that
are not part of the format specifications must match
characters in the input stream. These characters are read
from the input stream but are discarded and not stored. If a
character in the input stream conflicts with the format string,
scanf terminates. Any conflicting characters remain in the
input stream.

The first format specification encountered in the format
string references the first argument after fmtstr and
converts input characters and stores the value using the
format specification. The second format specification
accesses the second argument after fmtstr, and so on. If
there are more arguments than format specifications, the
extra arguments are ignored. Results are unpredictable if
there are not enough arguments for the format specifications.

Values in the input stream are called input fields and are
delimited by whitespace characters. When converting input
fields, scanf ends a conversion for an argument when a
whitespace character is encountered. Additionally, any
unrecognized character for the current format specification
ends a field conversion.

Format specifications have the following format:

% �*� �width� �{b | h | l}� type

Each field in the format specification can be a single
character or a number which specifies a particular format
option.

The type field is where a single character specifies whether
input characters are interpreted as a character, string, or
number. This field can be any one of the characters in the
following table.

Character Argument Type Input Format

d int * Signed decimal number

i int * Signed decimal, hexadecimal, or
octal integer

u unsigned int * Unsigned decimal number

302 Chapter 8. Library Reference

8

Character Argument Type Input Format

o unsigned int * Unsigned octal number

x unsigned int * Unsigned hex number

e float * Floating-point number

f float * Floating-point number

g float * Floating-point number

c char * A single character

s char * A string of characters terminated by
whitespace

 An asterisk (*) as the first character of a format specification
causes the input field to be scanned but not stored. The
asterisk suppresses assignment of the format specification.

The width field is a non-negative number that specifies the
maximum number of characters read from the input stream.
No more than width characters are read from the input
stream and converted for the corresponding argument.
However, fewer than width characters may be read if a
whitespace character or an unrecognized character is
encountered first.

The optional characters b, h, and l may immediately precede
the type character to respectively specify char, short, or
long versions of the integer types d, i, u, o, and x.

NOTE
This function is implementation-specific and is based on the
operation of the _getkey and/or putchar functions. These
functions, as provided in the standard library, read and
write characters using the serial port of the 8051. Custom
functions may use other I/O devices.

The total number of bytes that may be passed to scanf is
limited due to the memory restrictions imposed by the 8051.
A maximum of 15 bytes may be passed in SMALL model or
COMPACT model. A maximum of 40 bytes may be passed
in LARGE model.

Keil Software — Cx51 Compiler User’s Guide 303

 8

Return Value: The scanf function returns the number of input fields that
were successfully converted. An EOF is returned if an error
is encountered.

See Also: gets, printf, puts, sprintf, sscanf, vprintf, vsprintf

Example: #include <stdio.h>

void tst_scanf (void) {
char a;
int b;
long c;

unsigned char x;
unsigned int y;
unsigned long z;

float f,g;

char d, buf [10];

int argsread;

printf ("Enter a signed byte, int, and long\n");
argsread = scanf ("%bd %d %ld", &a, &b, &c);
printf ("%d arguments read\n", argsread);

printf ("Enter an unsigned byte, int, and long\n");
argsread = scanf ("%bu %u %lu", &x, &y, &z);
printf ("%d arguments read\n", argsread);

printf ("Enter a character and a string\n");
argsread = scanf ("%c %9s", &d, buf);
printf ("%d arguments read\n", argsread);

printf ("Enter two floating-point numbers\n");
argsread = scanf ("%f %f", &f, &g);
printf ("%d arguments read\n", argsread);

}

304 Chapter 8. Library Reference

8

setjmp

Summary: #include <setjmp.h>
int setjmp (
 jmp_buf env); /* current environment */

Description: The setjmp function saves the current state of the CPU in
env. The state can be restored by a subsequent call to the
longjmp function. When used together, the setjmp and
longjmp functions provide you with a way to execute a
non-local goto.

A call to the setjmp function saves the current instruction
address as well as other CPU registers. A subsequent call to
the longjmp function restores the instruction pointer and
registers, and execution resumes at the point just after the
setjmp call.

Local variables and function arguments are restored only if
declared with the volatile attribute.

Return Value: The setjmp function returns a value of 0 when the current
state of the CPU has been copied to env. A non-zero value
indicates that the longjmp function was executed to return
to the setjmp function call. In such a case, the return value
is the value passed to the longjmp function.

See Also: longjmp

Example: See longjmp

Keil Software — Cx51 Compiler User’s Guide 305

 8

sin / sin517

Summary: #include <math.h>
float sin (
 float x); /* value to calculate sine for */

Description: The sin function calculates the sine of the floating-point
value x. The value of x must be in the -65535 to +65535
range or an NaN error value is generated.

The sin517 function is identical to sin, but uses the
arithmetic unit of the Infineon C517x, C509 to provide
faster execution. When using this function include the
header file 80C517.H. Do not use this routine with a CPU
that does not support this feature.

Return Value: The sin function returns the sine of x.

See Also: cos, tan

Example: #include <math.h>
#include <stdio.h> /* for printf */

void tst_sin (void) {
float x;
float y;

for (x = 0; x < (2 * 3.1415); x += 0.1) {
y = sin (x);

printf ("SIN(%f) = %f\n", x, y);
}

}

306 Chapter 8. Library Reference

8

sinh

Summary: #include <math.h>
float sinh (
 float val); /* value to calc hyperbolic sine for */

Description: The sinh function calculates the hyperbolic sine of the
floating-point value x. The value of x must be in the
-65535 to +65535 range or an NaN error value is generated.

Return Value: The sinh function returns the hyperbolic sine of x.

See Also: cosh, tanh

Example: #include <math.h>
#include <stdio.h> /* for printf */

void tst_sinh (void) {
float x;
float y;

for (x = 0; x < (2 * 3.1415); x += 0.1) {
y = sinh (x);
printf ("SINH(%f) = %f\n", x, y);

}

}

Keil Software — Cx51 Compiler User’s Guide 307

 8

sprintf / sprintf517

Summary: #include <stdio.h>
int sprintf (
 char *buffer, /* storage buffer */
 const char *fmtstr /* format string */
 �, argument�…); /* additional arguments */

Description: The sprintf function formats a series of strings and numeric
values and stores the resulting string in buffer. The fmtstr
argument is a format string and has the same requirements as
specified for the printf function. Refer to “printf /
printf517” on page 290 for a description of the format string
and additional arguments.

The sprintf517 function is identical to sprintf, but uses the
arithmetic unit of the Infineon C517x, C509 to provide
faster execution. When using this function, include the
header file 80C517.H. Do not use this routine with a CPU
that does not support this feature.

NOTE
The total number of bytes that may be passed to sprintf is
limited due to the memory restrictions imposed by the 8051.
A maximum of 15 bytes may be passed in SMALL model or
COMPACT model. A maximum of 40 bytes may be passed
in LARGE model.

Return Value: The sprintf function returns the number of characters
actually written to buffer.

See Also: gets, printf, puts, scanf, sscanf, vprintf, vsprintf

308 Chapter 8. Library Reference

8

Example: #include <stdio.h>

void tst_sprintf (void) {
char buf [100];
int n;

int a,b;
float pi;

a = 123;
b = 456;
pi = 3.14159;

n = sprintf (buf, "%f\n", 1.1);
n += sprintf (buf+n, "%d\n", a);
n += sprintf (buf+n, "%d %s %g", b, "---", pi);
printf (buf);

}

Keil Software — Cx51 Compiler User’s Guide 309

 8

sqrt / sqrt517

Summary: #include <math.h>
float sqrt (
 float x); /* value to calculate square root
of */

Description: The sqrt function calculates the square root of x.

The sqrt517 function is identical to sqrt, but uses the
arithmetic unit of the Infineon C517x, C509 to provide
faster execution. When using this function, include the
header file 80C517.H. Do not use this routine with a CPU
that does not support this feature.

Return Value: The sqrt function returns the positive square root of x.

See Also: exp, log, pow

Example: #include <math.h>
#include <stdio.h> /* for printf */

void tst_sqrt (void) {
float x;
float y;

x = 25.0;

y = sqrt (x); /* y = 5 */

printf ("SQRT(%f) = %f\n", x, y);

}

310 Chapter 8. Library Reference

8

srand

Summary: #include <stdlib.h>
void srand (
 int seed); /* random number generator seed */

Description: The srand function sets the starting value seed used by the
pseudo-random number generator in the rand function. The
random number generator produces the same sequence of
pseudo-random numbers for any given value of seed.

Return Value: None.

See Also: rand

Example: #include <stdlib.h>
#include <stdio.h> /* for printf */

void tst_srand (void) {
int i;
int r;

srand (56);

for (i = 0; i < 10; i++) {
printf ("I = %d, RAND = %d\n", i, rand ());

}

}

Keil Software — Cx51 Compiler User’s Guide 311

 8

sscanf / sscanf517

Summary: #include <stdio.h>
int sscanf (
 char *buffer, /* scanf input buffer */
 const char *fmtstr /* format string */
 �, argument�…); /* additional arguments */

Description: The sscanf function reads data from the string buffer. Data
input are stored in the locations specified by argument
according to the format string fmtstr. Each argument must
be a pointer to a variable that corresponds to the type
defined in fmtstr which controls the interpretation of the
input data. The fmtstr argument is composed of one or
more whitespace characters, non-whitespace characters, and
format specifications, as defined in the scanf function
description. Refer to “scanf” on page 300 for a complete
description of the formation string and additional arguments.

The sscanf517 function is identical to sscanf, but uses the
arithmetic unit of the Infineon C517x, C509 to provide
faster execution. When using this function, include the
header file 80C517.H. Do not use this routine with a CPU
that does not support this feature.

NOTE
The total number of bytes that may be passed to sscanf is
limited due to the memory restrictions imposed by the 8051.
A maximum of 15 bytes may be passed in SMALL model or
COMPACT model. A maximum of 40 bytes may be passed
in LARGE model.

Return Value: The sscanf function returns the number of input fields that
were successfully converted. An EOF is returned if an error
is encountered.

See Also: gets, printf, puts, scanf, sprintf, vprintf, vsprintf

312 Chapter 8. Library Reference

8

Example: #include <stdio.h>

void tst_sscanf (void) {
char a;
int b;
long c;

unsigned char x;
unsigned int y;
unsigned long z;

float f,g;

char d, buf [10];

int argsread;

printf ("Reading a signed byte, int,and long\n");
argsread = sscanf ("1 -234 567890",

"%bd %d %ld", &a, &b, &c);
printf ("%d arguments read\n", argsread);

printf ("Reading an unsigned byte, int, and long\n");
argsread = sscanf ("2 44 98765432",

"%bu %u %lu", &x, &y, &z);
printf ("%d arguments read\n", argsread);

printf ("Reading a character and a string\n");
argsread = sscanf ("a abcdefg", "%c %9s", &d, buf);
printf ("%d arguments read\n", argsread);

printf ("Reading two floating-point numbers\n");
argsread = sscanf ("12.5 25.0", "%f %f", &f, &g);
printf ("%d arguments read\n", argsread);

}

Keil Software — Cx51 Compiler User’s Guide 313

 8

strcat

Summary: #include <string.h>
char *strcat (
 char *dest, /* destination string */
 char *src); /* source string */

Description: The strcat function concatenates or appends src to dest
and terminates dest with a null character.

Return Value: The strcat function returns dest.

See Also: strcpy, strlen, strncat, strncpy

Example: #include <string.h>
#include <stdio.h> /* for printf */

void tst_strcat (void) {
char buf [21];
char s [] = "Test String";

strcpy (buf, s);
strcat (buf, " #2");

printf ("new string is %s\n", buf);

}

314 Chapter 8. Library Reference

8

strchr

Summary: #include <string.h>
char *strchr (
 const char *string, /* string to search */
 char c); /* character to find */

Description: The strchr function searches string for the first occurrence
of c. The null character terminating string is included in
the search.

Return Value: The strchr function returns a pointer to the character c
found in string or a null pointer if no matching character is
found.

See Also: strcspn, strpbrk, strpos, strrchr, strrpbrk, strrpos,
strspn, strstr

Example: #include <string.h>
#include <stdio.h> /* for printf */

void tst_strchr (void) {
char *s;
char buf [] = "This is a test";

s = strchr (buf, 't');

if (s != NULL)
printf ("found a 't' at %s\n", s);

}

Keil Software — Cx51 Compiler User’s Guide 315

 8

strcmp

Summary: #include <string.h>
char strcmp (
 char *string1, /* first string */
 char *string2); /* second string */

Description: The strcmp function compares the contents of string1 and
string2 and returns a value indicating their relationship.

Return Value: The strcmp function returns the following values to indicate
the relationship of string1 to string2:

Value Meaning

< 0 string1 less than string2
= 0 string1 equal to string2
> 0 string1 greater than string2

See Also: memcmp, strncmp

Example: #include <string.h>
#include <stdio.h> /* for printf */

void tst_strcmp (void) {
char buf1 [] = "Bill Smith";
char buf2 [] = "Bill Smithy";
char i;

i = strcmp (buf1, buf2);

if (i < 0)
printf ("buf1 < buf2\n");

else if (i > 0)
printf ("buf1 > buf2\n");

else
printf ("buf1 == buf2\n");

}

316 Chapter 8. Library Reference

8

strcpy

Summary: #include <string.h>
char *strcpy (
 char *dest, /* destination string */
 char *src); /* source string */

Description: The strcpy function copies src to dest and appends a null
character to the end of dest.

Return Value: The strcpy function returns dest.

See Also: strcat, strlen, strncat, strncpy

Example: #include <string.h>
#include <stdio.h> /* for printf */

void tst_strcpy (void) {
char buf [21];
char s [] = "Test String";

strcpy (buf, s);
strcat (buf, " #2");

printf ("new string is %s\n", buf);
}

Keil Software — Cx51 Compiler User’s Guide 317

 8

strcspn

Summary: #include <string.h>
int strcspn (
 char *src, /* source string */
 char *set); /* characters to find */

Description: The strcspn function searches the src string for any of the
characters in the set string.

Return Value: The strcspn function returns the index of the first character
located in src that matches a character in set. If the first
character in src matches a character in set, a value of 0 is
returned. If there are no matching characters in src, the
length of the string is returned.

See Also: strchr, strpbrk, strpos, strrchr, strrpbrk, strrpos, strspn

Example: #include <string.h>
#include <stdio.h> /* for printf */

void tst_strcspn (void) {
char buf [] = "13254.7980";
int i;

i = strcspn (buf, ".,");

if (buf [i] != '\0')
printf ("%c was found in %s\n", (char)
buf [i], buf);

}

318 Chapter 8. Library Reference

8

strlen

Summary: #include <string.h>
int strlen (
 char *src); /* source string */

Description: The strlen function calculates the length, in bytes, of src.
This calculation does not include the null terminating
character.

Return Value: The strlen function returns the length of src.

See Also: strcat, strcpy, strncat, strncpy

Example: #include <string.h>
#include <stdio.h> /* for printf */

void tst_strlen (void) {
char buf [] = "Find the length of this string";
int len;

len = strlen (buf);

printf ("string length is %d\n", len);

}

Keil Software — Cx51 Compiler User’s Guide 319

 8

strncat

Summary: #include <string.h>
char *strncat (
 char *dest, /* destination string */
 char *src, /* source string */
 int len); /* max. chars to concatenate */

Description: The strncat function appends at most len characters from
src to dest and terminates dest with a null character. If
src is shorter than len characters, src is copied up to and
including the null terminating character.

Return Value: The strncat function returns dest.

See Also: strcat, strcpy, strlen, strncpy

Example: #include <string.h>
#include <stdio.h> /* for printf */

void tst_strncat (void) {
char buf [21];

strcpy (buf, "test #");
strncat (buf, "three", sizeof (buf) - strlen

(buf));
}

320 Chapter 8. Library Reference

8

strncmp

Summary: #include <string.h>
char strncmp (
 char *string1, /* first string */
 char *string2, /* second string */
 int len); /* max characters to
compare */

Description: The strncmp function compares the first len bytes of
string1 and string2 and returns a value indicating their
relationship.

Return Value: The strncmp function returns the following values to
indicate the relationship of the first len bytes of string1 to
string2:

Value Meaning

< 0 string1 less than string2
= 0 string1 equal to string2
> 0 string1 greater than string2

See Also: memcmp, strcmp

Example: #include <string.h>
#include <stdio.h> /* for printf */

void tst_strncmp (void) {
char str1 [] = "Wrodanahan T.J.";
char str2 [] = "Wrodanaugh J.W.";

char i;

i = strncmp (str1, str2, 15);

if (i < 0) printf ("str1 < str2\n");
else if (i > 0) printf ("str1 > str2\n");
else printf ("str1 == str2\n");

}

Keil Software — Cx51 Compiler User’s Guide 321

 8

strncpy

Summary: #include <string.h>
char *strncpy (
 char *dest, /* destination string */
 char *src, /* source string */
 int len); /* max characters to
copy */

Description: The strncpy function copies at most len characters from
src to dest.

Return Value: The strncpy function returns dest.

See Also: strcat, strcpy, strlen, strncat

Example: #include <string.h>
#include <stdio.h> /* for printf */

void tst_strncpy (char *s) {
char buf [21];

strncpy (buf, s, sizeof (buf));
buf [sizeof (buf)] = '\0';

}

322 Chapter 8. Library Reference

8

strpbrk

Summary: #include <string.h>
char *strpbrk (
 char *string, /* string to search */
 char *set); /* characters to find */

Description: The strpbrk function searches string for the first
occurrence of any character from set. The null terminator is
not included in the search.

Return Value: The strpbrk function returns a pointer to the matching
character in string. If string contains no characters from
set, a null pointer is returned.

See Also: strchr, strcspn, strpos, strrchr, strrpbrk, strrpos, strspn

Example: #include <string.h>
#include <stdio.h> /* for printf */

void tst_strpbrk (void) {
char vowels [] ="AEIOUaeiou";
char text [] = "Seven years ago...";

char *p;

p = strpbrk (text, vowels);

if (p == NULL)
printf ("No vowels found in %s\n", text);

else
printf ("Found a vowel at %s\n", p);

}

Keil Software — Cx51 Compiler User’s Guide 323

 8

strpos

Summary: #include <string.h>
int strpos (
 const char *string, /* string to search */
 char c); /* character to find */

Description: The strpos function searches string for the first occurrence
of c. The null character terminating string is included in
the search.

Return Value: The strpos function returns the index of the character
matching c in string or a value of -1 if no matching
character was found. The index of the first character in
string is 0.

See Also: strchr, strcspn, strpbrk, strrchr, strrpbrk, strrpos,
strspn

Example: #include <string.h>
#include <stdio.h> /* for printf */

void tst_strpos (void) {
char text [] = "Search this string for
blanks";

int i;

i = strpos (text, ' ');

if (i == -1)
printf ("No spaces found in %s\n", text);

else
printf ("Found a space at offset %d\n", i);

}

324 Chapter 8. Library Reference

8

strrchr

Summary: #include <string.h>
char *strrchr (
 const char *string, /* string to search */
 char c); /* character to find */

Description: The strrchr function searches string for the last occurrence
of c. The null character terminating string is included in
the search.

Return Value: The strrchr function returns a pointer to the last character c
found in string or a null pointer if no matching character
was found.

See Also: strchr, strcspn, strpbrk, strpos, strrpbrk, strrpos, strspn

Example: #include <string.h>
#include <stdio.h> /* for printf */

void tst_strrchr (void) {
char *s;
char buf [] = "This is a test";

s = strrchr (buf, 't');

if (s != NULL)
printf ("found the last 't' at %s\n", s);

}

Keil Software — Cx51 Compiler User’s Guide 325

 8

strrpbrk

Summary: #include <string.h>
char *strrpbrk (
 char *string, /* string to search */
 char *set); /* characters to find */

Description: The strrpbrk function searches string for the last
occurrence of any character from set. The null terminator is
not included in the search.

Return Value: The strrpbrk function returns a pointer to the last matching
character in string. If string contains no characters from
set, a null pointer is returned.

See Also: strchr, strcspn, strpbrk, strpos, strrchr, strrpos, strspn

Example: #include <string.h>
#include <stdio.h> /* for printf */

void tst_strrpbrk (void) {
char vowels [] ="AEIOUaeiou";
char text [] = "American National Standards

Institute";

char *p;

p = strpbrk (text, vowels);

if (p == NULL)
printf ("No vowels found in %s\n", text);

else
printf ("Last vowel is at %s\n", p);

}

326 Chapter 8. Library Reference

8

strrpos

Summary: #include <string.h>
int strrpos (
 const char *string, /* string to search */
 char c); /* character to find */

Description: The strrpos function searches string for the last occurrence
of c. The null character terminating string is included in
the search.

Return Value: The strrpos function returns the index of the last character
matching c in string or a value of -1 if no matching
character was found. The index of the first character in
string is 0.

See Also: strchr, strcspn, strpbrk, strpos, strrchr, strrpbrk, strspn,
strstr

Example: #include <string.h>
#include <stdio.h> /* for printf */

void tst_strrpos (char *s) {

int i;

i = strpos (s, ' ');

if (i == -1)
printf ("No spaces found in %s\n", s);

else
printf ("Last space in %s is at offset %d\n",

s, i);
}

Keil Software — Cx51 Compiler User’s Guide 327

 8

strspn

Summary: #include <string.h>
int strspn (
 char *string, /* string to search */
 char *set); /* characters to allow */

Description: The strspn function searches the src string for characters
not found in the set string.

Return Value: The strspn function returns the index of the first character
located in src that does not match a character in set. If the
first character in src does not match a character in set, a
value of 0 is returned. If all characters in src are found in
set, the length of src is returned.

See Also: strchr, strcspn, strpbrk, strpos, strrchr, strrpbrk,
strrpos

Example: #include <string.h>
#include <stdio.h> /* for printf */

void tst_strspn (char *digit_str) {
char octd [] = "01234567";
int i;

i = strspn (digit_str, octd);

if (digit_str [i] != '\0')
printf ("%c is not an octal digit\n",

digit_str [i]);

}

328 Chapter 8. Library Reference

8

strstr

Summary: #include <string.h>
char *strstr (
 const char *src, /* string to search */
 char *sub); /* sub string to search */

Description: The strstr function locates the first occurrence of the string
sub in the string src and returns a pointer to the beginning
of the first occurrence.

Return Value: The strstr function returns a pointer within src that points
to a string identical to sub. If no such sub string exists in
src a null pointer is returned.

See Also: strchr, strpos

Example: #include <string.h>
#include <stdio.h> /* for printf */

char s1 [] = "My House is small";
char s2 [] = "My Car is green";

void tst_strstr (void) {
char *s;

s = strstr (s1, "House");
printf ("substr (s1, \"House\") returns %s\n", s);

Keil Software — Cx51 Compiler User’s Guide 329

 8

strtod / strtod517

Summary: #include <stdlib.h>
unsigned long strtod (
 const char *string, /* string to convert */
 char **ptr); /* ptr to subsequent characters */

Description: The strtod function converts string into a floating-point
value. The input string is a sequence of characters that can
be interpreted as a floating-point number. Whitespace
characters at the beginning of string are skipped.

The strtod517 function is identical to atof, but uses the
arithmetic unit of the Infineon 80C517 to provide faster
execution. When using this function, include the header file
80C517.H. Do not use this routine with a CPU that does not
support this feature.

The strtod function requires string to have the following
format:

�{+ | -}� digits �. digits� �{e | E} �{+ | -}� digits�

where:

digits may be one or more decimal digits.

The value of ptr is set to point to the first character in the
string immediately following the converted part of the
string. If ptr is NULL, no value is assigned to ptr. If no
conversion is possible, then ptr is set to the value of string
and the value 0 is returned by strtoul.

Return Value: The strtod function returns the floating-point value that is
produced by interpreting the characters in the string as a
number.

See Also: atof, atoi, atol, strtol, strtoul

330 Chapter 8. Library Reference

8

Example: #include <stdlib.h>
#include <stdio.h> /* for printf */

void tst_strtod (void) {
float f;
char s [] = "1.23";

f = strtod (s, NULL);
printf ("strtod(%s) = %f\n", s, f);

}

Keil Software — Cx51 Compiler User’s Guide 331

 8

strtol

Summary: #include <stdlib.h>
long strtol (
 const char *string, /* string to convert */
 char **ptr, /* ptr to subsequent characters */
 unsigned char base); /* number base for conversion */

Description: The strtol function converts string into a long value. The
input string is a sequence of characters that can be
interpreted as an integer number. Whitespace characters at
the beginning of string are skipped. An optional sign may
precede the number.

The strtol function requires string to have the following
format:

�whitespace� �{+ | -}� digits

where:

digits may be one or more decimal digits.

If the base is zero, the number should have the format of a
decimal-constant, octal-constant or hexadecimal-constant.
The radix of the number is deduced from its format. If the
value of base is between 2 and 36, the number must consist
of a non-zero sequence of letters and digits representing an
integer in the specified base. The letters a through z (or A
through Z) represent the values 10 through 36, respectively.
Only those letters representing values less than the base are
permitted. If the base is 16, the number may begin with 0x
or 0X, which is ignored.

The value of ptr is set to point to the first character in
string immediately following the converted part of the
string. If ptr is NULL no value is assigned to ptr. If no
conversion is possible, ptr is set to the value of string and
the value 0 is returned by strtol.

Return Value: The strtol function returns the integer value that is produced
by interpreting the characters in string as number. The

332 Chapter 8. Library Reference

8

value LONG_MIN or LONG_MAX is returned in case of
overflow.

See Also: atof, atoi, atol, strtod, strtoul

Example: #include <stdlib.h>
#include <stdio.h> /* for printf */

char s [] = "-123456789";

void tst_strtol (void) {
long l;

l = strtol (s, NULL, 10);
printf ("strtol(%s) = %ld\n", s, l);

}

Keil Software — Cx51 Compiler User’s Guide 333

 8

strtoul

Summary: #include <stdlib.h>
unsigned long strtoul (
 const char *string, /* string to convert */
 char **ptr, /* ptr to subsequent characters */
 unsigned char base); /* number base for conversion */

Description: The strtoul function converts string into an unsigned long
value. The input string is a sequence of characters that can
be interpreted as an integer number. Whitespace characters
at the beginning of string are skipped. An optional sign may
precede the number.

The strtoul function requires string to have the following
format:

�whitespace� �{+ | -}� digits

where:

digits may be one or more decimal digits.

If the base is zero, the number should have the format of a
decimal-constant, octal-constant or hexadecimal-constant.
The radix of the number is deduced from its format. If the
value of base is between 2 and 36, the number must consist
of a non-zero sequence of letters and digits representing an
integer in the specified base. The letters a through z (or A
through Z) represent the values 10 through 36, respectively.
Only those letters representing values less than the base are
permitted. If the base is 16, the number may begin with 0x
or 0X, which is ignored.

The value of ptr is set to point to the first character in
string immediately following the converted part of the
string. If ptr is NULL no value is assigned to ptr. If no
conversion is possible, ptr is set to the value of string and
the value 0 is returned by strtoul.

Return Value: The strtoul function returns the integer value that is
produced by interpreting the characters in string as a

334 Chapter 8. Library Reference

8

number. The value ULONG_MAX is returned in case of
overflow.

See Also: atof, atoi, atol, strtod, strtol

Example: #include <stdlib.h>
#include <stdio.h> /* for printf */

char s [] = "12345AB";

void tst_strtoul (void) {
unsigned long ul;

ul = strtoul (s, NULL, 16);
printf ("strtoul(%s) = %lx\n", s, ul);

}

Keil Software — Cx51 Compiler User’s Guide 335

 8

tan / tan517

Summary: #include <math.h>
float tan (
 float x); /* value to calculate tangent of
*/

Description: The tan function calculates the tangent of the floating-point
value x. The value of x must be in the -65535 to +65535
range or an NaN error value is generated.

The tan517 function is identical to tan, but uses the
arithmetic unit of the Infineon C517x, C509 to provide
faster execution. When using this function, include the
header file 80C517.H. Do not use this routine with a CPU
that does not support this feature.

Return Value: The tan function returns the tangent of x.

See Also: cos, sin

Example: #include <math.h>
#include <stdio.h> /* for printf */

void tst_tan (void) {
float x, y, pi;

pi = 3.14159;

for (x = -(pi/4); x < (pi/4); x += 0.1) {
y = tan (x);
printf ("TAN(%f) = %f\n", x, y);

}
}

336 Chapter 8. Library Reference

8

tanh

Summary: #include <math.h>
float tanh (
 float x); /* value to calc hyperbolic
tangent for */

Description: The tanh function calculates the hyperbolic tangent for the
floating-point value x.

Return Value: The tanh function returns the hyperbolic tangent of x.

See Also: cosh, sinh

Example: #include <math.h>
#include <stdio.h> /* for printf */

void tst_tanh (void) {
float x;
float y;
float pi;

pi = 3.14159;

for (x = -(pi/4); x < (pi/4); x += 0.1) {
y = tanh (x);
printf ("TANH(%f) = %f\n", x, y);

}

}

Keil Software — Cx51 Compiler User’s Guide 337

 8

testbit

Summary: #include <intrins.h>
bit _testbit_ (
 bit b); /* bit to test and clear */

Description: The _testbit_ routine produces a JBC instruction in the
generated program code to simultaneously test the bit b and
clear it to 0. This routine can be used only on directly
addressable bit variables and is invalid on any type of
expression. This routine is implemented as an intrinsic
function. The code required is included in-line rather than
being called.

Return Value: The _testbit_ routine returns the value of b.

Example: #include <intrins.h>
#include <stdio.h> /* for printf */

void tst_testbit (void){
bit test_flag;

if (_testbit_ (test_flag))
printf ("Bit was set\n");

else
printf ("Bit was clear\n");

}

338 Chapter 8. Library Reference

8

toascii

Summary: #include <ctype.h>
char toascii (
 char c); /* character to convert */

Description: The toascii macro converts c to a 7-bit ASCII character.
This macro clears all but the lower 7 bits of c.

Return Value: The toascii macro returns the 7-bit ASCII character for c.

See Also: toint

Example: #include <ctype.h>
#include <stdio.h> /* for printf */

void tst_toascii (char c) {
char k;

k = toascii (c);

printf ("%c is an ASCII character\n", k);
}

Keil Software — Cx51 Compiler User’s Guide 339

 8

toint

Summary: #include <ctype.h>
char toint (
 char c); /* digit to convert */

Description: The toint function interprets c as a hexadecimal value.
ASCII characters ‘0’ through ‘9’ generate values of 0 to 9.
ASCII characters ‘A’ through ‘F’ and ‘a’ through ‘f’
generate values of 10 to 15. If the value of c is not a
hexadecimal digit, the function returns –1.

Return Value: The toint function returns the value of the ASCII
hexadecimal character c.

See Also: toascii

Example: #include <ctype.h>
#include <stdio.h> /* for printf */

void tst_toint (void) {
unsigned long l;
char k;

for (l = 0; isdigit (k = getchar ());
l *= 10) {

l += toint (k);
}

}

340 Chapter 8. Library Reference

8

tolower

Summary: #include <ctype.h>
char tolower (
 char c); /* character to convert */

Description: The tolower function converts c to a lowercase character.
If c is not an alphabetic letter, the tolower function has no
effect.

Return Value: The tolower function returns the lowercase equivalent of c.

See Also: _tolower, toupper, _toupper

Example: #include <ctype.h>
#include <stdio.h> /* for printf */

void tst_tolower (void) {
unsigned char i;

for (i = 0x20; i < 0x7F; i++) {
printf ("tolower(%c) = %c\n", i, tolower(i));

}
}

Keil Software — Cx51 Compiler User’s Guide 341

 8

_tolower

Summary: #include <ctype.h>
char _tolower (
 char c); /* character to convert */

Description: The _tolower macro is a version of tolower that can be used
when c is known to be an uppercase character.

Return Value: The _tolower macro returns a lowercase character.

See Also: tolower, toupper, _toupper

Example: #include <ctype.h>
#include <stdio.h> /* for printf */

void tst__tolower (char k) {

if (isupper (k)) k = _tolower (k);
}

342 Chapter 8. Library Reference

8

toupper

Summary: #include <ctype.h>
char toupper (
 char c); /* character to convert */

Description: The toupper function converts c to an uppercase character.
If c is not an alphabetic letter, the toupper function has no
effect.

Return Value: The toupper function returns the uppercase equivalent of c.

See Also: tolower, _tolower, _toupper

Example: #include <ctype.h>
#include <stdio.h> /* for printf */

void tst_toupper (void) {
unsigned char i;

for (i = 0x20; i < 0x7F; i++) {
printf ("toupper(%c) = %c\n", i, toupper(i));

}
}

Keil Software — Cx51 Compiler User’s Guide 343

 8

_toupper

Summary: #include <ctype.h>
char _toupper (
 char c); /* character to convert */

Description: The _toupper macro is a version of toupper that can be
used when c is known to be a lowercase character.

Return Value: The _toupper macro returns an uppercase character.

See Also: tolower, _tolower, toupper

Example: #include <ctype.h>
#include <stdio.h> /* for printf */

void tst__toupper (char k) {
if (islower (k)) k = _toupper (k);

}

344 Chapter 8. Library Reference

8

ungetchar

Summary: #include <stdio.h>
char ungetchar (
 char c); /* character to unget */

Description: The ungetchar function stores the character c back into the
input stream. Subsequent calls to getchar and other stream
input functions return c. Only one character may be passed
to unget between calls to getchar.

Return Value: The ungetchar function returns the character c if
successful. If ungetchar is called more than once between
function calls that read from the input stream, EOF is
returned indicating an error condition.

See Also: _getkey, putchar, ungetchar

Example: #include <stdio.h>

void tst_ungetchar (void) {
char k;

while (isdigit (k = getchar ())) {
/* stay in the loop as long as k is a digit */

}
ungetchar (k);

}

Keil Software — Cx51 Compiler User’s Guide 345

 8

va_arg

Summary: #include <stdarg.h>
type va_arg (
 argptr, /* optional argument list */
 type); /* type of next argument */

Description: The va_arg macro is used to extract subsequent arguments
from a variable-length argument list referenced by argptr.
The type argument specifies the data type of the argument
to extract. This macro may be called only once for each
argument and must be called in the order of the parameters
in the argument list.

The first call to va_arg returns the first argument after the
prevparm argument specified in the va_start macro.
Subsequent calls to va_arg return the remaining arguments
in succession.

Return Value: The va_arg macro returns the value for the specified
argument type.

See Also: va_end, va_start

346 Chapter 8. Library Reference

8

Example: #include <stdarg.h>
#include <stdio.h> /* for printf */

int varfunc (char *buf, int id, ...) {
va_list tag;

va_start (tag, id);

if (id == 0) {
int arg1;
char *arg2;
long arg3;

arg1 = va_arg (tag, int);
arg2 = va_arg (tag, char *);
arg3 = va_arg (tag, long);

}
else {
char *arg1;
char *arg2;
long arg3;

arg1 = va_arg (tag, char *);
arg2 = va_arg (tag, char *);
arg3 = va_arg (tag, long);

}
}

void caller (void) {
char tmp_buffer [10];

varfunc (tmp_buffer, 0, 27, "Test Code", 100L);
varfunc (tmp_buffer, 1, "Test", "Code", 348L);

}

Keil Software — Cx51 Compiler User’s Guide 347

 8

va_end

Summary: #include <stdarg.h>
void va_end (
 argptr); /* optional argument list */

Description: The va_end macro is used to terminate use of the
variable-length argument list pointer argptr that was
initialized using the va_start macro.

Return Value: None.

See Also: va_arg, va_start

Example: See va_arg.

348 Chapter 8. Library Reference

8

va_start

Summary: #include <stdarg.h>
void va_start (
 argptr, /* optional argument list */
 prevparm); /* arg preceding optional args */

Description: The va_start macro, when used in a function with a
variable-length argument list, initializes argptr for
subsequent use by the va_arg and va_end macros. The
prevparm argument must be the name of the function
argument immediately preceding the optional arguments
specified by an ellipses (…). This function must be called
to initialize a variable-length argument list pointer before
any access using the va_arg macro is made.

Return Value: None.

See Also: va_arg, va_end

Example: See va_arg.

Keil Software — Cx51 Compiler User’s Guide 349

 8

vprintf

Summary: #include <stdio.h>
void vprintf (
 const char * fmtstr, /* pointer to format string */
 char * argptr); /* pointer to argument list */

Description: The vprintf function formats a series of strings and numeric
values and builds a string to write to the output stream using
the putchar function. The function is similar to the
counterpart printf, but it accepts a pointer to a list of
arguments instead of an argument list.

The fmtstr argument is a pointer to a format string and has
the same form and function as the fmtstr argument for the
printf function. Refer to “printf / printf517” on page 290
for a description of the format string. The argptr argument
points to a list of arguments that are converted and output
according to the corresponding format specifications in the
format.

NOTE
This function is implementation-specific and is based on the
operation of the putchar function. This function, as
provided in the standard library, writes characters using the
serial port of the 8051. Custom functions may use other I/O
devices.

Return Value: The vprintf function returns the number of characters
actually written to the output stream.

See Also: gets, puts, printf, scanf, sprintf, sscanf, vsprintf

350 Chapter 8. Library Reference

8

Example: #include <stdio.h>
#include <stdarg.h>

void error (char *fmt, ...) {
va_list arg_ptr;

va_start (arg_ptr, fmt); /* format string */
vprintf (fmt, arg_ptr);
va_end (arg_ptr);

}

void tst_vprintf (void) {
int i;
i = 1000;

/* call error with one parameter */
error ("Error: '%d' number too large\n", i);

/* call error with just a format string */
error ("Syntax Error\n");

}

Keil Software — Cx51 Compiler User’s Guide 351

 8

vsprintf

Summary: #include <stdio.h>
void vsprintf (
 char *buffer, /* pointer to storage buffer */
 const char * fmtstr, /* pointer to format string */
 char * argptr); /* pointer to argument list */

Description: The vsprintf function formats a series of strings and
numeric values and stores the string in buffer. The function
is similar to the counterpart sprintf, but it accepts a pointer
to a list of arguments instead of an argument list.

The fmtstr argument is a pointer to a format string and has
the same form and function as the fmtstr argument for the
printf function. Refer to “printf / printf517” on page 290
for a description of the format string. The argptr argument
points to a list of arguments that are converted and output
according the corresponding format specifications in the
format.

Return Value: The vsprintf function returns the number of characters
actually written to the output stream.

See Also: gets, puts, printf, scanf, sprintf, sscanf, vprintf

352 Chapter 8. Library Reference

8

Example: #include <stdio.h>
#include <stdarg.h>

xdata char etxt[30]; /* text buffer */

void error (char *fmt, ...) {
va_list arg_ptr;

va_start (arg_ptr, fmt); /* format string */
vsprintf (etxt, fmt, arg_ptr);
va_end (arg_ptr);

}

void tst_vprintf (void) {
int i;
i = 1000;

/* call error with one parameter */
error ("Error: '%d' number too large\n", i);

/* call error with just a format string */
error ("Syntax Error\n");

}

Keil Software — Cx51 Compiler User’s Guide 353

 A

Appendix A. Differences from ANSI C
The Cx51 compiler differs in only a few aspects from the ANSI C Standard.
These differences can be grouped into compiler-related differences and
library-related differences.

Compiler-related Differences
� Wide Characters

Wide 16-bit characters are not supported by Cx51. ANSI provides wide
characters for future support of an international character set.

� Recursive Function Calls
Recursive function calls are not supported by default. Functions that are
recursive must be declared using the reentrant function attribute. Reentrant
functions can be called recursively because the local data and parameters are
stored in a reentrant stack. In comparison, functions which are not declared
using the reentrant attribute use static memory segments for the local data of
the function. A recursive call to these functions overwrites the local data of
the prior function call instance.

Library-related Differences
The ANSI C Standard Library includes a vast number of routines, most of which
are included in Cx51. Many, however, are not applicable to an embedded
application and are excluded from the Cx51 library.

The following ANSI Standard library routines are included in the Cx51 library:

abs
acos
asin
atan
atan2
atof
atoi
atol
calloc
ceil
cos

cosh
exp
fabs
floor
fmod
free
getchar
gets
isalnum
isalpha
iscntrl

isdigit
isgraph
islower
isprint
ispunct
isspace
isupper
isxdigit
labs
log
log10

354 Appendix A. Differences from ANSI C

A

longjmp
malloc
memchr
memcmp
memcpy
memmove
memset
modf
pow
printf
putchar
puts
rand
realloc
scanf
setjmp

sin
sinh
sprintf
sqrt
srand
sscanf
strcat
strchr
strcmp
strcpy
strcspn
strlen
strncat
strncmp
strncpy
strpbrk

strrchr
strspn
strstr
strtod
strtol
strtoul
tan
tanh
tolower
toupper
va_arg
va_end
va_start
vprintf
vsprintf

The following ANSI Standard library routines are not included in the Cx51
library:

abort
asctime
atexit
bsearch
clearerr
clock
ctime
difftime
div
exit
fclose
feof
ferror
fflush
fgetc
fgetpos
fgets
fopen
fprintf
fputc
fputs
fread

freopen
frexp
fscanf
fseek
fsetpos
ftell
fwrite
getc
getenv
gmtime
ldexp
ldiv
localeconv
localtime
mblen
mbstowcs
mbtowc
mktime
perror
putc
qsort
raise

remove
rename
rewind
setbuf
setlocale
setvbuf
signal
strcoll
strerror
strftime
strtok
strxfrm
system
time
tmpfile
tmpnam
ungetc
vfprintf
wcstombs
wctomb

Keil Software — Cx51 Compiler User’s Guide 355

 A

The following routines are not found in the ANSI Standard Library but are
included in the Cx51 library:

acos517
asin517
atan517
atof517
cabs
chkfloat
cos517
crol
cror
exp517
_getkey
init_mempool
irol

iror
log10517
log517
lrol
lror
memccpy
nop
printf517
scanf517
sin517
sprintf517
sqrt517
sscanf517

strpos
strrpbrk
strrpos
strtod517
tan517
testbit
toascii
toint
_tolower
_toupper
ungetchar

356 Appendix A. Differences from ANSI C

A

Keil Software — Cx51 Compiler User’s Guide 357

 B

Appendix B. Version Differences
This appendix lists an overview of major product enhancements and differences
between the current version of the Cx51 compiler and previous versions. The
current version contains all enhancements listed below:

Version 6.0 Differences
� EXTERNAL and SEGMENT limitations removed

The number of external symbols and segments per module are no longer
limited to 256. This historical limitation was imposed by the old Intel Object
File format.

� First 256 characters of a variable name are significant
Now the first 256 characters of a variable name are significant. Previously,
only the first 32 characters were significant.

� Support for Philips 80C51MX and Dallas Contiguous Mode
Cx51 provides support for the Philips 80C51MX architecture and the Dallas
Contiguous Mode that is available on the Dallas 390 and variants.

� OMF2 directive and far memory type support
The OMF2 directive selects a new OMF file format that provides detailed
symbol type checking across modules and supports up to 16MB code and
xdata memory. This format is required when you use the STRING,
VARBANKING, and XCROM directives.

� STRING directive
Cx51 allows you to locate constant strings into const xdata or const far
space which leaves more code space available for program code.

� USERCLASS directive
Assigns user defined class names to compiler generated segments. Class
names may be referenced by the LX51 linker to locate all segments with a
specific class name.

� VARBANING directive and far memory type support
Two new memory types, far and const far, and user configureable access
routines provide support for up to 16MB extended code and xdata memory.
The VARBANKING directive enables far memory type support.

� XCROM directive
The XCROM directive locates constants into xdata ROM which frees code
ROM space for program code.

358 Appendix B. Version Differences

B

� Support for Analog Devices B2 series of MicroConverters
The B2 series of ADuC devices contains dual DPTR and an extended stack.

NOTE
Only the the PK51 Professional Developers Kit supports the OMF2 output file
format, Philips 80C51MX, Dallas Contiguous Mode, and VARBANKING. These
options are not available in the CA51 and DK51 packages.

Version 5 Differences
� Optimize Level 7, 8, and 9

C51 offers three new optimizer levels. These new optimizations focus
primarily on code density. Refer to “Optimizer” on page 157 for more
information.

� Directives for the dual DPTR support
C51 provides dual DPTR support for Atmel, Atmel WM, and, Philips with
the directives MODA2 and MODP2.

� data, pdata, xdata automatic variables overlayable in all memory models
C51 now overlays all data, pdata, and xdata automatic variables regardless of
the selected memory model. In previous C51 versions, only automatic
variables of the default memory type are overlaid. For example, C51 Version
5 did not overlay pdata or xdata variables if a function where compiled in the
SMALL memory model.

� The data type enum adjusts automatically 8 or 16 bits.
C51 now uses a char variable to represent an enum, if the enum range allows
that.

� modf, strtod, strtol, strtoul Library Functions
C51 now includes the ANSI standard library functions modf, strtod, strtol,
strtoul

� BROWSE, INCDIR, ONEREGBANK, RET_XSTK, and RET_PSTK
Directives
C51 supports new directives for generating Browse Information, specifying
include directives, optimizing interrupt code, and using the reentrant stack for
return addresses. Refer to “Chapter 2. Compiling with the Cx51” on page 17
for more information.

Keil Software — Cx51 Compiler User’s Guide 359

 B

Version 4 Differences
� Byte Order of Floating-point Numbers

Floating-point numbers are now stored in the big endian order. Previous
releases of the C51 compiler stored floating-point numbers in little endian
format. Refer to “Floating-point Numbers” on page 179 for more
information.

� _chkfloat_ Library Function
The intrinsic function _chkfloat_ allows for fast testing of floating-point
numbers for error (NaN), ±INF, zero and normal numbers. Refer to
“_chkfloat_” on page 245 for more information.

� FLOATFUZZY Directive
C51 now supports the FLOATFUZZY directive. This directive controls the
number of bits ignored during the execution of a floating-point compare.
Refer to “FLOATFUZZY” on page 38 for more information.

� Floating-point Arithmetic is Fully Reentrant
Intrinsic floating-point arithmetic operations (add, subtract, multiply, divide,
and compare) are now fully reentrant. The C library routines fpsave and
fprestore are no longer needed. Several library routines are also reentrant.
Refer to “Routines by Category” on page 218 for more information.

� Long and Floating-point Operations no Longer use an Arithmetic Stack
The long and floating-point arithmetic is more efficient; the code generated
is now totally register-based and does not use a simulated arithmetic stack.
This also reduces the memory needs of the generated code.

� Memory Types
The memory types have been changed to achieve better performance in the
run-time library and to reflect the memory map of the MCS® 251 architecture.

� Memory Type Bytes for Generic Pointers
The memory type bytes used in generic pointers have changed. The
following table contains the memory type byte values and their associated
memory type.

Memory Type idata data bdata xdata pdata code

C51 V5 Value 0x00 0x00 0x00 0x01 0xFE 0xFF
C51 V4 Value 0x01 0x04 0x04 0x02 0x03 0x05

� WARNINGLEVEL Directive
C51 now supports the WARNINGLEVEL directive which lets you specify
the strength of the warning detection for the C51 compiler. The C51

360 Appendix B. Version Differences

B

compiler now also checks for unused local variables, labels, and expressions.
Refer to “WARNINGLEVEL” on page 85 for more information.

Keil Software — Cx51 Compiler User’s Guide 361

 B

Version 3.4 Differences
� _at_Keyword

C51 supports variable location using the _at_ keyword. This new keyword
allows you to specify the address of a variable in a declaration. Refer to “The
at Keyword” on page 186 for more information.

� NOAMAKE Directive
C51 now supports the NOAMAKE directive. This directive causes C51 to
generate object modules without project information and register
optimization records. This is necessary only if you want to use object files
with older versions of C51 tools.

� OH51 Hex File Converter
The OHS51 Object-Hex-Symbol Converter provided with prior versions of
C51 has been replaced with OH51.

� Optimizer Level 6
C51 now supports optimizer level 6 which provides loop rotation. The
resulting code is more efficient and executes faster.

� ORDER Directive
When you specify the ORDER directive, C51 locates variables in memory in
the order in which they are declared in your source file. Refer to “ORDER”
on page 65 for more information.

� REGFILE Directive
C51 now supports the REGFILE directive which lets you specify the name
of the register definition file generated by the linker. This file contains
information that is used to optimize the use of registers between functions in
different modules. Refer to “REGFILE” on page 70 for more information.

� vprintf and vsprint Library Functions
The vprintf and vsprintf library functions have been added. Refer to
“vprintf” on page 349 and “vsprintf” on page 351 for more information.

362 Appendix B. Version Differences

B

Version 3.2 Differences
� ANSI Standard Automatic Integer Promotion

The latest version of the ANSI C Standard requires that calculations use int
values if char or unsigned char values might overflow during the
calculation. This new requirement is based on the premise that int and char
operations are similar on 16-bit CPUs. C51 supports this feature as the
default and provides you with two new directives, INTPROMOTE and
NOINTPROMOTE, to enable or disable integer promotion.

There is a big difference between 8-bit and 16-bit operations on the 8-bit
8051 in terms of code size and execution speed. For this reason, you might
want to disable integer promotion by using the NOINTPROMOTE
directive.

However, if you wish to retain maximum compatibility with other C
compilers and platforms, leave integer promotions enabled.

� Assembly Source Generation with In-Line Assembly
You may use the new directives ASM and ENDASM to include source text
to output to .SRC files generated using the SRC command directive.

� New Directives
The directives ASM, ENDASM, INTERVAL, INTPROMOTE,
INTVECTOR, MAXARGS, and NOINTPROMOTE have been added or
enhanced.

� Offset and Interval Can Now Be Specified for Interrupt Vectors
You may now specify the offset and interval for the interrupt vector table.
These features provide support for the SIECO-51 derivatives and allow you
to specify a different location for the interrupt vector in situations where the
interrupt table is not located at address 0000h.

� Parameter Passing to Indirectly Called Functions
Function parameters may now be passed to indirectly called functions if all of
the parameters can be passed in CPU registers. These functions do not have
to be declared with the reentrant attribute.

� Source Code Provided For Memory Allocation Functions
C source code for the memory allocation routines is now provided with the
C51 compiler. You may now more easily adapt these functions to the
hardware architecture of your embedded system.

� Trigraphs
C51 now supports trigraph sequences.

Keil Software — Cx51 Compiler User’s Guide 363

 B

� Variable-length Argument Lists for All Functions
Variable-length argument lists are now supported for all function types.
Functions with a variable length argument list do not have to be declared
using the reentrant attribute. The new command line directive MAXARGS
determines the size of the parameter passing area.

Version 3.0 Differences
� New Directive Added for Assembly Source File Output

The SRC directive has been added to direct the compiler to generate an
assembly language source file instead of an object file.

� New Library Functions
The library functions calloc, free, init_mempool, malloc, and realloc have
been added.

364 Appendix B. Version Differences

B

Version 2 Differences
� Absolute Register Addressing

C51 now generates code that performs absolute register addressing. This
improves execution speed. The directives AREGS and NOAREGS,
respectively, enable or disable this feature.

� Bit-addressable Memory Type
Variable types of char and int can now be declared to reside in the
bit-addressable internal memory area by using the bdata memory specifier.

� Intrinsic Functions
Intrinsic functions have been added to the library to support some of the
special instructions built in to the 8051.

� Mixed Memory Models
Calls to and from functions of different memory models are now supported.

� New Optimizer Levels
Two new levels of optimization have been added to the C51 compiler. These
new levels support register variables, local common subexpression
elimination, loop optimizations, and global common subexpression
elimination, to name a few.

� New Predefined Macros
The macros _ _C51_ _ and _ _MODEL_ _ are now defined by the
preprocessor at compile time.

� Reentrant and Recursive Functions
Individual functions may now be defined as being reentrant or recursive by
using the reentrant function attribute.

� Registers Used for Parameter Passing
C51 now passes up to 3 function arguments using registers. The
REGPARMS and NOREGPARMS directives enable or disable this feature.

� Support for Memory-specific Pointers
Pointers may now be defined to reference data in a particular memory area.

� Support for PL/M-51 Functions
The alien keyword has been added to support PL/M-51 compatible functions
and function calls.

� Volatile Type Specifier
The volatile variable attribute may be used to enforce variable access and to
prevent optimizations involving that variable.

Keil Software — Cx51 Compiler User’s Guide 365

 B

Keil Software — Cx51 Compiler User’s Guide 367

 C

Appendix C. Writing Optimum Code
This section lists a number of ways you can improve the efficiency (i.e., smaller
code and faster execution) of the 8051 code generated by the Cx51 compiler.
The following is by no means a complete list of things to try. These suggestions
in most cases, however, improve the speed and code size of your program.

Memory Model
The most significant impact on code size and execution speed is memory model.
Compiling in the small model always generates the smallest, fastest code
possible. The SMALL directive instructs the Cx51 compiler to use the small
memory model. In the small model, all variables, unless declared otherwise,
reside in the internal memory of the 8051. Memory access to internal data
memory is fast (typically performed in 1 or 2 clock cycles), and the generated
code is much smaller than that generated with the compact or large models. For
example, the following loop:

for (i = 0; i < 100; i++) {
do_nothing ();

}

is compiled in both the small and large models to demonstrate the difference in
generated code. The following is the small model translation:

stmt level source

1 #pragma small
2
3 void do_nothing (void);
4
5
6 void func (void)
7 {
8 1 unsigned char i;
9 1
10 1 for (i = 0; i < 100; i++)
11 1 {
12 2 do_nothing ();
13 2 }
14 1 }

; FUNCTION func (BEGIN)
; SOURCE LINE # 10

0000 E4 CLR A
0001 F500 R MOV i,A
0003 ?C0001:
0003 E500 R MOV A,i
0005 C3 CLR C
0006 9464 SUBB A,#064H

368 Appendix C. Writing Optimum Code

C

0008 5007 JNC ?C0004
; SOURCE LINE # 12

000A 120000 E LCALL do_nothing
; SOURCE LINE # 13

000D 0500 R INC i
000F 80F2 SJMP ?C0001

; SOURCE LINE # 14
0011 ?C0004:
0011 22 RET

; FUNCTION func (END)

In the small model, the variable i is maintained in internal data memory. The
instructions to access i, MOV A,i and INC i, require only two bytes each of
code space. In addition, each of these instructions executes in only one clock
cycle. The total size for the main function when compiled in small model is 11h
or 17 bytes.

The following is the same code compiled using the large model:

; FUNCTION func (BEGIN)
; SOURCE LINE # 10

0000 E4 CLR A
0001 900000 R MOV DPTR,#i
0004 F0 MOVX @DPTR,A
0005 ?C0001:
0005 900000 R MOV DPTR,#i
0008 E0 MOVX A,@DPTR
0009 C3 CLR C
000A 9464 SUBB A,#064H
000C 500B JNC ?C0004

; SOURCE LINE # 12
000E 120000 E LCALL do_nothing

; SOURCE LINE # 13
0011 900000 R MOV DPTR,#i
0014 E0 MOVX A,@DPTR
0015 04 INC A
0016 F0 MOVX @DPTR,A
0017 80EC SJMP ?C0001

; SOURCE LINE # 14
0019 ?C0004:
0019 22 RET

; FUNCTION func (END)

In the large model, the variable i is maintained in external data memory. To
access i, the compiler must first load the data pointer and then perform an
external memory access (see offset 0001h through 0004h in the above listing).
These two instructions alone take 4 clock cycles. The code to increment i is
found from offset 0011h to offset 0016h. This operation consumes 6 bytes of
code space and takes 7 clock cycles to execute. The total size for the main
function when compiled in the small model is 19h or 25 bytes.

Keil Software — Cx51 Compiler User’s Guide 369

 C

Variable Location
Frequently accessed data objects should be located in the internal data memory
of the 8051. Accessing the internal data memory is much more efficient than
accessing the external data memory. The internal data memory is shared among
register banks, the bit data area, the stack, and other user defined variables with
the memory type data.

Because of the limited amount of internal data memory (128 to 256 bytes), all
your program variables may not fit into this memory area. In this case, you must
locate some variables in other memory areas. There are two ways to do this.

One way is to change the memory model and let the compiler do all the work.
This is the simplest method, but it is also the most costly in terms of the amount
of generated code and system performance. Refer to “Memory Model” on page
367 for more information.

Another way to locate variables in other memory areas is to manually select the
variables that can be moved into external data memory and declare them using
the xdata memory specifier. Usually, string buffers and other large arrays can
be declared with the xdata memory type without a significant degradation in
performance or increase in code size.

Variable Size
Members of the 8051 family are all 8-bit CPUs. Operations that use 8-bit types
(like char and unsigned char) are much more efficient than operations that use
int or long types. For this reason, always use the smallest data type possible.

The Cx51 compiler directly supports all byte operations. Byte types are not
promoted to integers unless required. See the INTPROMOTE directive for
more information.

An example can be illustrated by examining a multiplication operation. The
multiplication of two char objects is done inline with the 8051 instruction
MUL AB. To accomplish the same operation with int or long types would require
a call to a compiler library function.

370 Appendix C. Writing Optimum Code

C

Unsigned Types
The 8051 family of processors does not specifically support operations with
signed numbers. The compiler must generate additional code to deal with sign
extensions. Far less code is produced if unsigned objects are used wherever
possible.

Local Variables
When possible, use local variables for loops and other temporary calculations.
As part of the optimization process, the compiler attempts to maintain local
variables in registers. Register access is the fastest type of memory access. The
best effect is normally achieved with unsigned char and unsigned int variable
types.

Other Sources
The quality of the compiler-generated code is more often than not directly
influenced by the algorithms implemented in the program. Sometimes, you can
improve the performance or reduce the code size simply by using a different
algorithm. For example, a heap sort algorithm always outperforms a bubble sort
algorithm.

For more information on how to write efficient programs, refer to the following
books:

The Elements of Programming Style, Second Edition
Kernighan & Plauger
McGraw-Hill
ISBN 0-07-034207-5

Writing Efficient Programs
Jon Louis Bentley
Prentice-Hall Software Series
ISBN 0-13-970244-X

Efficient C
Plum & Brodie
Plum Hall, Inc.
ISBN 0-911537-05-8

Keil Software — Cx51 Compiler User’s Guide 371

 D

Appendix D. Compiler Limits
The Cx51 compiler embodies some known limitations that are listed below. For
the most part, there are no limits with respect to components of the C language;
for example, you may specify an unlimited number of symbols or number of case
statements in a switch block. If there is enough address space, several thousand
symbols could be defined.

� A maximum of 19 levels of indirection (access modifiers) to any standard
data type are supported. This includes array descriptors, indirection
operators, and function descriptors.

� Names may be up to 256 characters long. The C language provides for case
sensitivity in regard to function and variable names. However, for
compatibility reasons, all names in the object file appear in capital letters. It
is therefore irrelevant if an external object name within the source program is
written in capital or small letters.

� The maximum number of case statements in a switch block is not fixed.
Limits are imposed only by the available memory size and the maximum size
of individual functions.

� The maximum number of nested function calls in an invocation parameter list
is 10.

� The maximum number of nested include files is 9. This value is independent
of list files, preprocessor files, or whether or not an object file is to be
generated.

� The maximum depth of directives for conditional compilation is 20. This is a
preprocessor limitation.

� Instruction blocks ({…}) may be nested up to 15 levels deep.

� Macros may be nested up to 8 levels deep.

� A maximum of 32 parameters may be passed in a macro or function call.

� The maximum length of a line or a macro definition is 2000 characters. Even
after a macro expansion, the result may not exceed 2000 characters.

372 Appendix D. Compiler Limits

D

Keil Software — Cx51 Compiler User’s Guide 373

 E

Appendix E. Byte Ordering
Most microprocessors have a memory architecture that is composed of 8-bit
address locations known as bytes. Many data items (addresses, numbers, and
strings) are too long to be stored using a single byte and must be stored in a
series of consecutive bytes.

When using data that are stored in multiple bytes, byte ordering becomes an
issue. Unfortunately, there is not just one standard for the order in which bytes
in multi-byte data are stored. There are two popular methods of byte ordering
currently in widespread use.

The first method is called little endian and is often referred to as Intel order. In
little endian, the least significant, or low-order byte is stored first. For example,
a 16-bit integer value of 0x1234 (4660 decimal) would be stored using the little
endian method in two consecutive bytes as follows:

Address +0 +1

Contents 0x34 0x12

A 32-bit integer value of 0x57415244 (1463898692 decimal) would be stored
using the little endian method as follows:

Address +0 +1 +2 +3

Contents 0x44 0x52 0x41 0x57

A second method of accessing multi-byte data is called big endian and is often
referred to as Motorola order. In big endian, the most significant, or high-order
byte is stored first, and the least significant, or low-order byte is stored last. For
example, a 16-bit integer value of 0x1234 would be stored using the big endian
method in two consecutive bytes as follows:

Address +0 +1

Contents 0x12 0x34

A 32-bit integer value of 0x004A4F4E would be stored using the big endian
method as follows:

Address +0 +1 +2 +3

Contents 0x00 0x4A 0x4F 0x4E

374 Appendix E. Byte Ordering

E

The 8051 is an 8-bit machine and has no instructions for directly manipulating
data objects that are larger than 8 bits. Multi-byte data are stored according to
the following rules.

� The 8051 LCALL instruction stores the address of the next instruction on the
stack. The address is pushed onto the stack low-order byte first. The address
is, therefore, stored in memory in little endian format.

� All other 16-bit and 32-bit values are stored, contrary to other Intel
processors, in big endian format, with the high-order byte stored first. For
example, the LJMP and LCALL instructions expect 16-bit addresses that are
in big endian format.

� Floating-point numbers are stored according to the IEEE-754 format and are
stored in big endian format with the high-order byte stored first.

If your 8051 embedded application performs data communications with other
microprocessors, it may be necessary to know the byte ordering method used by
the other CPU. This is certainly true when transmitting raw binary data.

Keil Software — Cx51 Compiler User’s Guide 375

 F

Appendix F. Hints, Tips, and
Techniques

This section lists a number of illustrations and tips which commonly require
further explanation. Items in this section are listed in no particular order and are
merely intended to be referenced if you experience similar problems.

Recursive Code Reference Error
The following program example:

#pragma code symbols debug oe

void func1(unsigned char *msg) { ; }

void func2(void) {
unsigned char uc;
func1("xxxxxxxxxxxxxxx");

}

code void (*func_array[])() = { func2 };

void main(void) {
(*func_array[0])();

}

when compiled and linked using the following command lines:

C51 EXAMPLE1.C

BL51 EXAMPLE1.OBJ IX

fails and display the following error message.

*** WARNING 13: RECURSIVE CALL TO SEGMENT
SEGMENT: ?CO?EXAMPLE1
CALLER: ?PR?FUNC2?EXAMPLE1

In this program example, func2 defines a constant string (“xxx…xxx”) which is
directed into the constant code segment ?CO?EXAMPLE1. The definition code
void (*func_array[])() = { func2 }; yields a reference between segment
?CO?EXAMPLE1 (where the code table is located) and the executable code
segment ?PR?FUNC2?EXAMPLE1. Because func2 also refers to segment
?CO?EXAMPLE1, BL51 assumes that there is a recursive call.

376 Appendix F. Hints, Tips, and Techniques

F

To avoid this problem, link using the following command line:

Lx51 EXAMPLE1.OBJ IX OVERLAY &
(?CO?EXAMPLE1 ~ FUNC2, MAIN ! FUNC2)

?CO?EXAMPLE1 ~ FUNC2 deletes the implied call reference between func2 and
the code constant segment in the example. Then, MAIN ! FUNC2 adds an
additional call to the reference listing between MAIN and FUNC2 instead. Refer
to the Ax51 Macro Assembler User’s Guide for more information.

In summary, automatic overlay analysis cannot be successfully accomplished
when references are made via pointers to functions. References of this type must
be manually implemented, as in the example above.

Problems Using the printf Routines
The printf functions are implemented using a variable-length argument list.
Arguments specified after the format string are passed using their inherent data
type. This can cause problems when the format specification expects a data
object of a different type than was passed. For example, the following code:

printf ("%c %d %u %bu", 'A', 1, 2, 3);

does not print the string “A 1 2 3”. This is because the Cx51 compiler passes the
arguments 1, 2, and 3 all as 8-bit byte types. The format specifiers %d and
%u both expect 16-bit int types.

To avoid this type of problem, you must explicitly define the data type to pass to
the printf function. To do this, you must type cast the above values. For
example:

printf ("%c %d %u %bu", 'A',(int) 1, (unsigned int) 2, (char) 3);

If you are uncertain of the size of the argument that is passed, you may cast the
value to the desired size.

Keil Software — Cx51 Compiler User’s Guide 377

 F

Uncalled Functions
It is common practice during the development process to write but not call
additional functions. While the compiler permits this without error, the
Linker/Locator does not treat this code casually because of the support for data
overlaying, and emits a warning message.

Interrupt functions are never called, they are invoked by the hardware. An
uncalled routine is treated as a potential interrupt routine by the linker. This
means that the function is assigned non-overlayable data space for its local
variables. This quickly exhausts all available data memory (depending upon the
memory model used).

If you unexpectedly run out of memory, be sure to check for linker warnings
relating to uncalled or unused routines. You can use the linker’s IXREF
directive to include a cross reference list in the linker map (.M51) file.

Using Monitor-51
If you want to test a C program with Monitor-51 and if the Monitor-51 is
installed at code address 0, consider the following rules (the specification refers
to a target system where the available code memory for user programs starts at
address 8000H):

� All C modules which contain interrupt functions must be translated with the
directive INTVECTOR (0x8000).

� In STARTUP.A51, the statement CSEG AT 0 must be replaced with CSEG
AT 8000H. Then, this file must be assembled and linked with your program
as specified in the file header.

378 Appendix F. Hints, Tips, and Techniques

F

Trouble with the bdata Memory Type
Some users have reported difficulties in using the bdata memory type. Using
bdata is similar to using the sfr modifier. The most common error is
encountered when referencing a bdata variable defined in another module. For
example:

extern bdata char xyz_flag;

sbit xyz_bit1 = xyz_flag^1;

In order to generate the appropriate instructions, the compiler must have the
absolute value of the reference to be generated. In the above example, this
cannot be done, as this address of xyz_flag cannot be known until after the
linking phase has been completed. Follow the rules below to avoid this problem.

1. A bdata variable (defined and used in the same way as an sfr) must be
defined in global space; not within the scope of a procedure.

2. A bdata bit variable (defined and used in the same way as an sbit) must also
be defined in global space, and cannot be located within the scope of a
procedure.

3. The definition of the bdata variable and the creation of its sbit access
component name must be accomplished where the compiler has a “view” of
both the variable and the component.

For example, declare the bdata variable and the bit component in the same
source module:

bdata char xyz_flag;
sbit xyz_bit1 = xyz_flag^1;

Then, declare the bit component external:

extern bit xyz_bit1;

As with any other declared and named C variable that reserves space, simply
define your bdata variable and its component sbits in a module. Then, use the
extern bit specifier to reference it as the need arises.

Keil Software — Cx51 Compiler User’s Guide 379

 F

Function Pointers
Function pointers are one of the most difficult aspects of C to understand and to
properly utilize. Most problems involving function pointers are caused by
improper declaration of the function pointer, improper assignment, and improper
dereferencing.

The following brief example demonstrates how to declare a function pointer (f),
how to assign function addresses to it, and how to call the functions through the
pointer. The printf routine is used for example purposes when running DS51 to
simulate program execution.

#pragma code symbols debug oe

#include <reg51.h> /* special function register declarations */
#include <stdio.h> /* prototype declarations for I/O functions */

void func1(int d) { /* function #1 */
printf("In FUNC1(%d)\n", d);

}

void func2(int i) { /* function #2 */
printf("In FUNC2(%d)\n", i);

}

void main(void) {
void (*f)(int i); /* Declaration of a function pointer */

/* that takes one integer arguments */
/* and returns nothing */

SCON = 0x50; /* SCON: mode 1, 8-bit UART, enable rcvr */
TMOD |= 0x20; /* TMOD: timer 1, mode 2, 8-bit reload */
TH1 = 0xf3; /* TH1: reload value for 2400 baud */
TR1 = 1; /* TR1: timer 1 run */
TI = 1; /* TI: set TI to send first char of UART */

while(1) {
f = (void *)func1; /* f points to function #1 */
f(1);
f = (void *)func2; /* f points to function #2 */
f(2);

}
}

NOTE
Because of the limited stack space of the 8051, the linker overlays function
variables and arguments in memory. When you use a function pointer, the linker
cannot correctly create a call tree for your program. For this reason, you may
have to correct the call tree for the data overlaying. Use the OVERLAY
directive with the linker to do this. Refer to the Ax51 Macro Assembler User’s
Guide for more information.

380 Appendix F. Hints, Tips, and Techniques

F

Keil Software — Cx51 Compiler User’s Guide 381

 F

Keil Software — Cx51 Compiler User’s Guide 383

Glossary
A51

The standard 8051 Macro Assembler.

AX51
The extended 8051 Macro Assembler.

ANSI
American National Standards Institute. The organization responsible for
defining the C language standard.

argument
The value that is passed to a macro or function.

arithmetic types
Data types that are integral, floating-point, or enumerations.

array
A set of elements, all of the same data type.

ASCII
American Standard Code for Information Interchange. This is a set of 256
codes used by computers to represent digits, characters, punctuation, and
other special symbols. The first 128 characters are standardized. The
remaining 128 are defined by the implementation.

batch file
An ASCII text file containing commands and programs that can be invoked
from the command line.

Binary-Coded Decimal (BCD)
A BCD (Binary-Coded Decimal) is a system used to encode decimal numbers
in binary form. Each decimal digit of a number is encoded as a binary value
4 bits long. A byte can hold 2 BCD digits – one in the upper 4 bits (or
nibble) and one in the lower 4 bits (or nibble).

BL51
The standard 8051 linker/locator.

block
A sequence of C statements, including definitions and declarations, enclosed
within braces ({ }).

384 Glossary

C51
The Optimizing C Compiler for classic 8051 and extended 8051 devices.

CX51
The Optimizing C Compiler for Philips 80C51MX architecture and the Dallas
80C390.

constant expression
Any expression that evaluates to a constant non-variable value. Constants
may include character and integer constant values.

control
Command line control switch to the compiler, assembler or linker.

declaration
A C construct that associates the attributes of a variable, type, or function
with a name.

definition
A C construct that specifies the name, formal parameters, body, and return
type of a function or that initializes and allocates storage for a variable.

directive
Instruction or control switch to the compiler, assembler or linker.

escape sequence
A backslash (‘\’) character followed by a single letter or a combination of
digits that specifies a particular character value in strings and character
constants.

expression
A combination of any number of operators and operands that produces a
constant value.

formal parameters
The variables that receive the value of arguments passed to a function.

function
A combination of declarations and statements that can be called by name to
perform an operation and/or return a value.

function body
A block containing the declarations and statements that make up a function.

function call
An expression that invokes and possibly passes arguments to a function.

Keil Software — Cx51 Compiler User’s Guide 385

function declaration
The name and return type of a function that is explicitly defined elsewhere in
the program.

function definition
The name, formal parameters, return type, declarations, and statements
describing what a function does.

function prototype
A function declaration that includes the list of formal parameters in
parentheses following the function name.

in-circuit emulator (ICE)
A hardware device that aids in debugging embedded software by providing
hardware-level single-stepping, tracing, and break-pointing. Some ICEs
provide a trace buffer that stores the most recent CPU events.

include file
A text file that is incorporated into a source file.

keyword
A reserved word with a predefined meaning for the compiler or assembler.

L51
The old version of the 8051 linker/locator. L51 is replaced with the BL51
linker/locater.

LX51
The extended 8051 linker/locator.

LIB51, LIBX51
The commands to manipulate library files using the Library Manager.

library
A file that stores a number of possibly related object modules. The linker can
extract modules from the library to use in building a target object file.

LSB
Least significant bit or byte.

macro
An identifier that represents a series of keystrokes.

manifest constant
A macro that is defined to have a constant value.

386 Glossary

MCS® 51
The general name applied to the Intel family of 8051 compatible
microprocessors.

memory model
Any of the models that specifies which memory areas are used for function
arguments and local variables.

mnemonic
An ASCII string that represents a machine language opcode in an assembly
language instruction.

MON51
An 8051 program that can be loaded into your target CPU to aid in debugging
and rapid product development through rapid software downloading.

MSB
Most significant bit or byte.

newline character
A character used to mark the end of a line in a text file or the escape sequence
(‘\n’) to represent the newline character.

null character
ASCII character with the value 0 represented as the escape sequence (‘\0’).

null pointer
A pointer that references nothing. A null pointer has the integer value 0.

object
An area of memory that can be examined. Usually used when referring to the
memory area associated with a variable or function.

object file
A file, created by the compiler, that contains the program segment
information and relocatable machine code.

OH51, OHX51
The commands to convert absolute object files into Intel HEX file format.

opcode
Also referred to as operation code. An opcode is the first byte of a machine
code instruction and is usually represented as a 2–digit hexadecimal number.
The opcode indicates the type of machine language instruction and the type
of operation to perform.

Keil Software — Cx51 Compiler User’s Guide 387

operand
A variable or constant that is used in an expression.

operator
A symbol (e.g., +, -, *, /) that specifies how to manipulate the operands of an
expression.

parameter
The value that is passed to a macro or function.

PL/M-51
A high-level programming language introduced by Intel at the beginning of
the 1980’s.

pointer
A variable containing the address of another variable, function, or memory
area.

pragma
A statement that passes an instruction to the compiler at compile time.

preprocessor
The compiler’s first pass text processor that manipulates the contents of a C
file. The preprocessor defines and expands macros, reads include files, and
passes directives to the compiler.

relocatable
Object code that can be relocated and is not at a fixed address.

RTX51 Full
An 8051 Real-time Executive that provides a multitasking operating system
kernel and library of routines for its use.

RTX51 Tiny
A limited version of RTX51.

scalar types
In C, integer, enumerated, floating-point, and pointer types.

scope
Sections of a program where an item (function or variable) can be referenced
by name. The scope of an item may be limited to file, function, or block.

Special Function Register (SFR)
An SFR or Special Function Register is a register in the 8051 internal data
memory space that is used to read and write to the hardware components of

388 Glossary

the 8051. This includes the serial port, timers, counters, I/O ports, and other
hardware control registers.

source file
A text file containing C program or assembly program code.

stack
An area of memory, indirectly accessed by a stack pointer, that shrinks and
expands dynamically as items are pushed onto and popped off of the stack.
Items in the stack are removed on a LIFO (last-in first-out) basis.

static
A storage class that, when used with a variable declaration in a function,
causes variables to retain their value after exiting the block or function in
which they are declared.

stream functions
Routines in the library that read and write characters using the input and
output streams.

string
An array of characters that is terminated with a null character (‘\0’).

string literal
A string of characters enclosed within double quotes (“ ”).

structure
A set of elements of possibly different types grouped together under one
name.

structure member
One element of a structure.

token
A fundamental symbol that represents a name or entity in a programming
language.

two’s complement
A binary notation that is used to represent both positive and negative
numbers. Negative values are created by complementing all bits of a positive
value and adding 1.

type
A description of the range of values associated with a variable. For example,
an int type can have any value within its specified range (-32768 to 32767).

Keil Software — Cx51 Compiler User’s Guide 389

type cast
An operation in which an operand of one type is converted to another type by
specifying the desired type, enclosed within parentheses, immediately
preceding the operand.

µµµµVision2
An integrated software development platform that supports the Keil Software
development tools. µVision2 combines Project Management, Source Code
Editing, and Program Debugging in one environment.

whitespace character
Characters used as delimiters in C programs such as space, tab, and newline.

wild card
One of the characters (? or *) that can be used in place of characters in a
filename.

390 Glossary

Keil Software — Cx51 Compiler User’s Guide 391

Index

#... 134
##... 135
#define... 133
#elif.. 133
#else... 133
#endif... 133
#error ... 133
#if .. 133
#ifdef ... 133
#ifndef ... 133
#include ... 133
#line... 133
#pragma... 133
#undef.. 133
.I files... 19
.LST files ... 19
.OBJ files... 19
.SRC files... 19
?C?xLDXPTR 152
?C?XPAGE1RST 152
?C?XPAGE1SFR 152
?C?xSTXPTR.................................. 152
_ _C51_ _ .. 136
_ _CX51_ _ 136
_ _DATE_ _ 136
_ _DATE2_ _ 136
_ _FILE_ _ 136
_ _LINE_ _...................................... 136
_ _MODEL_ _................................. 136
_ _STDC_ _..................................... 136
_ _TIME_ _ 136
at 102,184,356
chkfloat................................. 219,243
crol................................. 207,219,246
cror 207,219,247
_getkey 222,254
irol 207,219,257
iror 207,219,258
lrol 207,219,275
lror 207,219,276
nop................................. 207,225,285
testbit 207,225,334

_tolower217,338
_toupper217,340
+INF

described180
8051 Derivatives137
8051 Hardware Stack.......................117
8051 Memory Areas88
8051 Variants.....................................15
8051-Specific Optimizations............156
80C320/520 or variants......................53
80C517 Routines

acos517226
asin517226
atan517.......................................226
atof517226
cos517 ..226
exp517..226
log10517226
log517 ..226
printf517.....................................226
scanf517226
sin517...226
sprintf517226
sqrt517..226
sscanf517....................................226
strtod517226
tan517...226

80C517.H...226
80C751.LIB208
80x8252 or variants50

A
A51

Interfacing161
A51, defined.....................................375
abs...218,231
ABSACC.H......................................227
Absolute Memory Access
Macros ...210

CBYTE210
CWORD.....................................210
DBYTE211
DWORD.....................................211
FARRAY....................................212

392 Index

FCARRAY................................. 212
FCVAR 213
FVAR... 213
PBYTE....................................... 214
PWORD..................................... 214
XBYTE 215
XWORD 215

Absolute Memory Locations............ 182
Absolute register addressing 24
Absolute value

abs .. 231
cabs .. 240
fabs... 249
labs ... 270

Abstract Pointers.............................. 112
Access Optimizing 156
Accessing Absolute Memory
Locations ... 182
acos ... 219,232
acos517 .. 232
Additional items, notational
conventions .. 5
Address of interrupts........................ 123
ADuC... 150
ADuC B2 Series 51,138
Advanced Programming
Techniques....................................... 147
alien ... 130
Analog Devices.................... 51,138,150
ANSI

Differences 349
Include Files............................... 226
Library.. 207
Standard C Constant................... 136

ANSI, defined 375
Arc

cosine ... 232
sine ... 233
tangent................................. 235,236

AREGS .. 24
Argument lists, variable-length ... 47,225
argument, defined 375
Arithmetic Accelerator..................... 142
arithmetic types, defined 375
array, defined 375
ASCII, defined................................. 375
asin.. 219,233

asin517 ...233
ASM...26
Assembly code in-line26
Assembly listing29
Assembly source file generation.........78
assert ..234
ASSERt.H ..227
atan..219,235
atan2..219,236
atan517...235
Atmel

89x8252 and variants..................139
Atmel 80x8252 or variants50
Atmel WM

dual DPTR support.....................146
AtmelWM dual DPTR54
atof ..218,237
atof517 ...237
atoi...218,238
atol...218,239
AUTOEXEC.BAT17
AX51, defined375

B
Basic I/O Functions..........................154
batch file, defined.............................375
bdata...89
bdata, tips for....................................372
big endian...367
Binary-Coded Decimal (BCD),
defined..375
bit

As first parameter in function
call ..118

Bit shifting functions
crol..219
cror ...219
irol ..219
iror ..219
lrol ..219
lror ..219

Bit Types ..96
Bit-addressable objects.......................97
BL51, defined...................................375
block, defined...................................375
bold capital text, use of5
bold type, use of5

Keil Software — Cx51 Compiler User’s Guide 393

Books
About the C Language 16

BR ... 28
braces, use of 5
BROWSE .. 28
Buffer manipulation routines

memccpy............................. 216,278
memchr 216,279
memcmp.............................. 216,280
memcpy............................... 216,281
memmove............................ 216,282
memset 216,283

Buffer Manipulation Routines 216

C
C51 command.................................... 17
C51, defined 375
C517 CPU ... 48
C51C.LIB .. 208
C51FPC.LIB.................................... 208
C51FPL.LIB.................................... 208
C51FPS.LIB 208
C51INC ... 17
C51L.LIB .. 208
C51LIB.. 17
C51S.LIB... 208
cabs... 218,240
calloc .. 221,241
CALLOC.C 154
Case/Switch Optimizing 156
Categories of Cx51 directives............ 20
CBYTE..................................... 182,210
CD ... 29
ceil .. 219,242
Character Classification
Routines... 217

isalnum....................................... 217
isalpha.. 217
iscntrl ... 217
isdigit ... 217
isgraph 217
islower 217
isprint ... 217
ispunct.. 217
isspace.. 217
isupper 217
isxdigit 217

Character Conversion and
Classification Routines.....................217
Character Conversion Routines........217

_tolower217
_toupper217
toascii ...217
toint ..217
tolower217
toupper217

Choices, notational conventions...........5
CO..31
code..88
CODE ..29
Code generation options156
Code Optimization58
Common Block Subroutines155
compact..119
COMPACT ..30
Compact memory model30
Compact Model..................................93
Compatibility

differences from standard C349
Differences to previous
versions353
Differences to Version 2359
Differences to Version 3.0358
Differences to Version 3.2357
Differences to Version 3.4356
Differences to Version 4355
Differences to Version 5354
Differences to Version 6.0353
standard C library differences
...349

Compiling ..17
COND..31
Conditional compilation.....................31
const far ...91
constant expression, defined376
Constant Folding..............................155
Control directives...............................20
control, defined376
cos...219,244
cos517..244
cosh...219,245
courier typeface, use of5
CP ..30
CTYPE.H...227

394 Index

Customization Files 148
CWORD 182,210
Cx51

Control directives......................... 20
Errorlevel 19
Extensions 87
Output files................................... 19

CX51 command 17
CX51, defined.................................. 376

D
Dallas 5240 .. 52
Dallas 80C320/520 or variants 53
Dallas 80C390 52
Dallas 80C400 52
Dallas Semiconductor

5240 ... 141
80C320....................................... 140
80C390....................................... 141
80C400....................................... 141
80C420....................................... 140
80C520....................................... 140
80C530....................................... 140

data .. 89
Data Conversion Routines 218

abs .. 218
atof ... 218
atoi ... 218
atol ... 218
cabs .. 218
labs ... 218
strtod .. 218
strtol ... 218
strtoul ... 218

Data memory...................................... 89
Data Overlaying............................... 156
data pointers......... 138,139,140,143,146
Data sizes... 95
Data Storage Formats....................... 174
Data type ranges................................. 95
Data Types... 95
DB.. 33
DBYTE..................................... 182,211
Dead Code Elimination.................... 155
DEBUG ... 33
Debug information........................ 33,59
Debugging.. 185

declaration, defined376
define..133
DEFINE ...34
Defining macros on the
command line34
definition, defined376
Derivatives ...15
DF ..34
Differences from Standard C............349
Differences to Previous Versions353
Directive categories............................20
Directive reference23
directive, defined..............................376
DISABLE...35
Disabling interrupts35
Displayed text, notational
conventions ..5
Document conventions5
double brackets, use of5
DS80C390..150
DS80C400..150
DWORD....................................182,211

E
EJ ...37
EJECT..37
elif ..133
ellipses, use of5
ellipses, vertical, use of5
else ...133
ENDASM...26
endian...367
endif ...133
Environment Variables.......................17
EOF..229
error..133
ERRORLEVEL..................................19
escape sequence, defined..................376
exp...219,248
exp517..248
exponent ...177
expression, defined...........................376
Extended Memory..............................91
Extensions for Cx5187
Extensions to C87
External Data Memory90

Keil Software — Cx51 Compiler User’s Guide 395

F
fabs ... 219,249
far .. 91
far memory .. 83
FARRAY.................................. 182,212
Fatal Error Messages 187
FCARRAY 182,212
FCVAR..................................... 182,213
FF .. 38
Filename, notational conventions 5
Files generated by Cx51 19
float

exponent..................................... 177
mantissa 177

float numbers 177
FLOATFUZZY 38
Floating-point compare...................... 38
Floating-Point Errors 180

+INF .. 180
-INF ... 180
Nan .. 180

Floating–point numbers 177
floor .. 219,250
fmod ... 219,251
Form feeds... 37
formal parameters, defined 376
free.. 221,252
FREE.C ... 154
function body, defined..................... 376
function call, defined 376
function declaration, defined 376
Function Declarations...................... 116
function definition, defined 377
Function extensions 116,117
Function Parameters 161
Function Pointers, tips for 373
function prototype, defined.............. 377
Function return values 118
Function Return Values 163
function, defined.............................. 376
Functions ... 116

Interrupt 123
Memory Models......................... 119
Parameters in Registers.............. 118
Recursive 127
Reentrant.................................... 127
Register Bank............................. 120

Stack & Parameters117
FVAR..182,213

G
General Optimizations155
getchar.......................................222,253
GETKEY.C......................................154
gets..222,255
Global Common Subexpression
Elimination.......................................155
Global register optimization...............69
Glossary ...375

H
High-Speed Arithmetic144

I
I/O Functions154
IBPSTACK......................................149
IBPSTACKTOP149
ICE, defined377
idata ...89
IDATALEN149
IEEE-754 standard...........................177
if...133
ifdef..133
ifndef..133
INCDIR..39
in-circuit emulator, defined..............377
include..133
Include file listing46
include file, defined377
Include Files................................39,226

80C517.H226
ABSACC.H................................227
ASSERT.H.................................227
CTYPE.H...................................227
INTRINS.H................................227
MATH.H....................................228
REGxxx.H.................................. 226
SETJMP.H228
STDARG.H................................228
STDDEF.H.................................228
STDIO.H....................................229
STDLIB.H..................................229

396 Index

STRING.H 229
-INF

described 180
Infineon

C517, 80C537, C509 143
Infineon C517 48
INIT.A51 ... 151
INIT_MEM.C.................................. 154
init_mempool 221,256
INIT_TNY.A51 151
Initializing memory.......................... 149
Initializing the stream I/O
routines .. 222
In-line assembly................................. 26
Integer promotion 41
Interfacing C Programs to A51 161
Interfacing C Programs to
PL/M-51... 173
Internal Data Memory........................ 89
interrupt 121,124
Interrupt

Addresses 123
Description................................. 123
Function rules............................. 126
Functions.................................... 123
Numbers..................................... 123

Interrupt vector 43
Interrupt vector interval 40
Interrupt vector offset 43
INTERVAL 40
INTPROMOTE 41
INTRINS.H...................................... 227
Intrinsic Routines............................. 207

crol ... 207
cror... 207
irol.. 207
iror.. 207
lrol.. 207
lror.. 207
nop ... 207
testbit...................................... 207

INTVECTOR..................................... 43
IP ... 41
isalnum...................................... 217,259
isalpha....................................... 217,260
iscntrl .. 217,261
isdigit .. 217,262

isgraph.......................................217,263
islower217,264
isprint ..217,265
ispunct217,266
isspace217,267
isupper.......................................217,268
isxdigit.......................................217,269
italicized text, use of.............................5
IV ...43

J
jmp_buf ..209
Jump Optimizing155

K
Key names, notational
conventions ..5
keyword, defined..............................377
Keywords ...87

L
L51, defined377
LA ..45
labs ..218,270
Language elements, notational
conventions ..5
Language Extensions..........................87
large..119
LARGE ..45
Large memory model45
Large Model93
LC ..46
LIB51, defined377
Library Files208

80C751.LIB................................208
C51C.LIB208
C51FPC.LIB...............................208
C51FPL.LIB...............................208
C51FPS.LIB208
C51L.LIB208
C51S.LIB....................................208

Library Reference.............................207
Library Routines

ANSI, excluded from Cx51350
ANSI, included in Cx51..............349

Keil Software — Cx51 Compiler User’s Guide 397

non-ANSI................................... 351
Library Routines by Category.......... 216
library, defined 377
LIBX51, defined.............................. 377
line... 133
Linker Location Controls................. 183
LISTINCLUDE 46
Listing file generation........................ 68
Listing file page length 65
Listing file page width 66
Listing include files 46
little endian 367
log... 219,271
log10... 219,272
log10517.. 272
log517.. 271
longjmp..................................... 225,273
LSB, defined.................................... 377
LX51, defined.................................. 377

M
macro, defined 377
malloc 221,277
MALLOC.C..................................... 154
manifest constant, defined 377
mantissa ... 177
Manual organization............................ 4
Math Routines 219

chkfloat 219
crol... 219
cror... 219
irol.. 219
iror ... 219
lrol.. 219
lror ... 219
acos .. 219
asin... 219
atan .. 219
atan2 .. 219
ceil ... 219
cos.. 219
cosh.. 219
exp ... 219
fabs .. 219
floor ... 219
fmod... 219
log .. 219

log10 ..219
modf ...219
pow...219
rand ..219
sin...219
sinh...219
sqrt..219
srand...219
tan...219
tanh...219

MATH.H..228
MAXARGS..47
Maximum arguments in
variable-length argument lists47
MCS® 51, defined377
memccpy...................................216,278
memchr216,279
memcmp....................................216,280
memcpy.....................................216,281
memmove..................................216,282
Memory Allocation154
Memory Allocation Routines221

calloc ..221
free ...221
init_mempool221
malloc...221
realloc...221

Memory areas.....................................88
external data90
internal data..................................89
program ..88
special function register................91

Memory class names81
Memory Model92

Compact93
Function119
Large ..93
Small ..92

memory model, defined378
Memory Type.....................................93

bdata..89,94
code ...88,94
const far..91
data...89
far83,91,94
idata...89,94
pdata..90,94

398 Index

xdata.. 90,94
Memory Typedata.............................. 94
memset 216,283
MicroConverter................................ 150
MicroConverter B2 Series 138
MicroConverter B2 Series 51
Miscellaneous Routines 225

nop ... 225
testbit...................................... 225
longjmp 225
setjmp... 225

mnemonic, defined........................... 378
MOD517..................................... 48,143
MODA2 50,139
MODAB2 51,138
MODDA2 .. 52
MODDP2.................................... 53,140
modf.. 219,284
MODP2....................................... 54,146
monitor51, defined........................... 378
MSB, defined................................... 378

N
NaN...................... 244,287,302,303,332

described 180
newline character, defined 378
NOAMAKE....................................... 55
NOAREGS .. 24
NOAU.. 49
NOCO.. 31
NOCOND .. 31
NODP8 .. 49
NOEXTEND 56
NOINTPROMOTE............................ 41
NOINTVECTOR............................... 43
NOIP.. 41
NOIV ... 43
NOMOD517 48
NOMODA2 50,139
NOMODAB2.............................. 51,138
NOMODDA2 52
NOMODDP2 53,140
NOMODP2................................. 54,146
NOOBJECT....................................... 57
NOOJ... 57
NOPR .. 68
NOPRINT.. 68

NOREGPARMS71
NULL...229
null character, defined378
null pointer, defined378

O
O2...61
OA..58
OB..60
OBJECT...57
Object file generation.........................57
object file, defined............................378
object, defined..................................378
OBJECTADVANCED.......................58
OBJECTEXTEND.............................59
OE ..59
offsetof ...286
OH51, defined..................................378
OHS51..356
OHX51, defined378
OJ ...57
OMF2...61
Omitted text, notational
conventions ..5
ONEREGBANK60
opcode, defined378
operand, defined...............................378
operator, defined379
OPTIMIZE...62
Optimizer ...155
Optimizing programs..........................62
Optimum Code

Local Variables...........................364
Memory Model...........................361
Other Sources364
Variable Location363
Variable Size363
Variable Types364

Optional items, notational
conventions ..5
Options for Code Generation156
OR..64
ORDER ..64
Order of variables...............................64
OT ..62
Output files...19
Overlaying Segments........................166

Keil Software — Cx51 Compiler User’s Guide 399

P
Page length in listing file 65
Page width in listing file 66
PAGELENGTH................................. 65
PAGEWIDTH 66
Parameter Passing in Fixed
Memory Locations........................... 163
Parameter Passing in Registers 162
Parameter Passing Via Registers 155
parameter, defined 379
Passing arguments in registers 71
Passing Parameters in Registers 118
PATH .. 17
PBPSTACK..................................... 150
PBPSTACKTOP 150
PBYTE 182,214
pdata .. 90
PDATALEN.................................... 149
PDATASTART 149
Peephole Optimization 156
Philips

80C51MX 146
8xC750 145
8xC751 145
8xC752 145
dual DPTR support 146

Philips 80C51MX............................ 150
Philips 80C75x 150
Philips dual DPTR............................. 54
Philips LPC...................................... 150
PL .. 65
PL/M-51 .. 130

Defined 379
Interfacing.................................. 173

Pointer Conversions......................... 109
Pointers.. 104

Generic....................................... 104
Memory-specific 107

pointers, defined 379
pow... 219,287
PP .. 67
PPAGE .. 150
PPAGEENABLE............................. 150
PR.. 68
pragma... 133
pragma, defined 379
Predefined Macro Constants............ 136

_ _C51_ _...................................136
_ _CX51_ _136
_ _DATE_ _...............................136
_ _DATE2_ _.............................136
_ _FILE_ _136
_ _LINE_ _136
_ _MODEL_ _136
_ _STDC_ _136
_ _TIME_ _................................136

Preface ...3
PREPRINT ..67
Preprocessor.....................................133
Preprocessor directives

define..133
elif ..133
else ...133
endif ...133
error..133
if ...133
ifdef ..133
ifndef ..133
include..133
line..133
pragma..133
undef...133

Preprocessor output file
generation...67
preprocessor, defined379
PRINT..68
Printed text, notational
conventions ..5
printf ...222,288
printf, tips for370
printf517 ..288
Program Memory88
Program memory size75
putchar222,293
PUTCHAR.C154
puts..222,294
PW ...66
PWORD....................................182,214

R
R0-R7...24
rand ...219,295
Range for data types...........................95
RB..70

400 Index

realloc 221,296
REALLOC.C 154
Real-Time Function Tasks 131
Recursive Code, tips for................... 369
Recursive Functions......................... 127
reentrant ... 127
Reentrant Functions 127
REGFILE... 69
Register bank 24,70
Register Bank............................ 120,122
Register banks.................................... 24
Register Usage 166
Register Variables............................ 155
REGISTERBANK............................. 70
Registers used for parameters 71
Registers used for return values 118
REGPARMS...................................... 71
relocatable, defined.......................... 379
Rename memory classes 81
RESTORE ... 76
RET_PSTK.. 73
RET_XSTK 73
Return values 118
Reuse of Common Entry Code 155
RF .. 69
ROM ... 75,141
Routines by Category....................... 216
RTX51 Full, defined........................ 379
RTX51 Tiny, defined....................... 379
Rules for interrupt functions 126

S
sans serif typeface, use of 5
SAVE... 76
SB .. 80
sbit ... 100
scalar types, defined......................... 379
scanf.. 222,297
scanf517... 297
scope, defined 379
Segment Naming Conventions......... 157
Serial Port, initializing for
stream I/O .. 222
setjmp.. 225,301
SETJMP.H....................................... 228
sfr ... 99
sfr16... 100

SIECO-51...357
sin..219,302
sin517...302
sinh..219,303
Size of data types95
SM..77
small ...119
SMALL ..77
Small memory model77
Small Model92
source file, defined380
Special Function Register (SFR),
defined..379
Special Function Register
Memory..91
Special Function Registers99
sprintf ..222,304
sprintf517 ...304
sqrt...219,306
sqrt517..306
srand..219,307
SRC ..78
sscanf...222,308
sscanf517..308
ST...79
Stack...117
Stack usage...73
stack, defined....................................380
Standard Types.................................209

jmp_buf209
va_list ...209

START_AD.A51150
START390.A51150
START751.A51150
STARTLPC.A51..............................150
STARTUP.A51149,150
static, defined380
STDARG.H......................................228
STDDEF.H.......................................228
STDIO.H..229
STDLIB.H..229
Storage format

bit..174
char ...175
code pointer175
data pointer175
enum ...175

Keil Software — Cx51 Compiler User’s Guide 401

far pointer 176
float.. 177
generic pointer 176
idata pointer 175
int ... 175
long .. 175
pdata pointer 175
short ... 175
xdata pointer 175

Store return addresses........................ 73
strcat ... 224,310
strchr... 224,311
strcmp 224,312
strcpy .. 224,313
strcspn....................................... 224,314
stream functions, defined................. 380
Stream I/O Routines 222

_getkey....................................... 222
getchar 222
gets... 222
Initializing.................................. 222
printf .. 222
putchar 222
puts .. 222
scanf... 222
sprintf... 222
sscanf ... 222
ungetchar.................................... 222
vprintf .. 222
vsprintf....................................... 222

Stream Input and Output.................. 222
STRING .. 79
string literal, defined........................ 380
String Manipulation Routines.......... 224

strcat .. 224
strchr .. 224
strcmp .. 224
strcpy ... 224
strcspn.. 224
strlen .. 224
strncat... 224
strncmp 224
strncpy 224
strpbrk.. 224
strpos.. 224
strrchr... 224
strrpbrk 224

strrpos...224
strspn ..224
strstr..224

string, defined380
STRING.H.......................................229
Stringize Operator............................134
strlen ...224,315
strncat..224,316
strncmp......................................224,317
strncpy.......................................224,318
strops..224
strpbrk.......................................224,319
strpos..320
strrchr..224,321
strrpbrk......................................224,322
strrpos224,323
strspn...224,324
strstr ..224,325
strtod ...218,326
strtod517 ..326
strtol ..218,328
strtoul ..218,330
structure member, defined................380
structure, defined..............................380
Symbol table generation.....................80
SYMBOLS...80
Syntax and Semantic Errors191

T
tan ...219,332
tan517 ..332
tanh ...219,333
TMP...17
toascii..217,335
toint ...217,336
token, defined...................................380
Token-pasting operator135
tolower217,337
toupper217,339
two’s complement, defined380
type cast, defined380
type, defined.....................................380

U
UCL ...81
Uncalled Functions, tips for371

402 Index

undef .. 133
ungetchar................................... 222,341
USERCLASS..................................... 81
using.. 120,125
Using Monitor-51, tips for 371

V
va_arg 225,342
va_end....................................... 225,344
va_list... 209
va_start...................................... 225,345
VARBANKING................................. 83
Variable-length argument list
routines .. 225
Variable-Length Argument List
Routines

va_arg... 225
va_end.. 225
va_start....................................... 225

Variable-length argument lists 47
Variables, notational
conventions .. 5
VB.. 83
vertical bar, use of................................ 5
vprintf 222,346
vsprintf...................................... 222,348

W
Warning detection84
WARNINGLEVEL............................84
Warnings ..203
WATCHDOG151
whitespace character, defined...........381
wild card, defined.............................381
WL ...84

X
XBANKING.C.................................152
XBPSTACK.....................................150
XBPSTACKTOP150
XBYTE182,215
XC..85
XCROM...85
xdata ...90
XDATALEN....................................149
XDATASTART149
XOFF ...154
XON...154
XRAM..90
XWORD....................................182,215

	Chapter 1. Introduction
	Support for all 8051 Variants
	Books About the C Language

	Chapter 2. Compiling with the Cx51 Compiler
	Environment Variables
	Running Cx51 from the Command Prompt
	ERRORLEVEL
	Cx51 Output Files

	Control Directives
	Directive Categories

	Reference

	Chapter 3. Language Extensions
	Keywords
	Memory Areas
	Program Memory
	Internal Data Memory

	External Data Memory
	Far Memory
	Special Function Register Memory

	Memory Models
	Small Model
	Compact Model
	Large Model

	Memory Types
	Explicitly Declared Memory Types
	Implicit Memory Types

	Data Types
	Bit Types
	Bit˚addressable Objects
	Special Function Registers
	sfr
	sfr16
	sbit

	Absolute Variable Location
	Pointers
	Generic Pointers
	Memory˚specific Pointers
	Pointer Conversions
	Abstract Pointers

	Function Declarations
	Function Parameters and the Stack
	Passing Parameters in Registers
	Function Return Values
	Specifying the Memory Model for a Function
	Specifying the Register Bank for a Function
	Register Bank Access
	Interrupt Functions
	Reentrant Functions
	Alien Function (PL/M˚51 Interface)
	Real˚time Function Tasks

	Chapter 4. Preprocessor
	Directives
	Stringize Operator
	Token˚pasting operator
	Predefined Macro Constants

	Chapter 5. 8051 Derivatives
	Analog Devices MicroConverter B2 Series
	Atmel 89x8252 and Variants
	Dallas 80C320, 420, 520, and 530
	Dallas 80C390, 80C400, 5240, and Variants
	Arithmetic Accelerator

	Infineon C517, C509, 80C537, and Variants
	Data Pointers
	High˚speed Arithmetic
	Library Routines

	Philips 8xC750, 8xC751, and 8xC752
	Philips 80C51MX Architecture
	Philips and Atmel WM Dual DPTR

	Chapter 6. Advanced Programming Techniques
	Customization Files
	STARTUP.A51
	INIT.A51
	XBANKING.A51
	Basic I/O Functions
	Memory Allocation Functions

	Optimizer
	General Optimizations
	8051˚Specific Optimizations
	Options for Code Generation

	Segment Naming Conventions
	Data Objects
	Program Objects

	Interfacing C Programs to Assembler
	Function Parameters
	Parameter Passing in Registers
	Parameter Passing in Fixed Memory Locations
	Function Return Values
	Using the SRC Directive
	Register Usage
	Overlaying Segments
	Example Routines
	Small Model Example
	Compact Model Example
	Large Model Example

	Interfacing C Programs to PL/M˚51
	Data Storage Formats
	Bit Variables
	Signed and Unsigned Characters, �Pointers to data, idata, and pdata
	Signed and Unsigned Integers, �Enumerations, Pointers to xdata and code
	Signed and Unsigned Long Integers
	Generic and Far Pointers
	Floating-point Numbers
	Floating˚point Errors

	Accessing Absolute Memory Locations
	Absolute Memory Access Macros
	Linker Location Controls
	The _at_ Keyword

	Debugging

	Chapter 7. Error Messages
	Fatal Errors
	Actions
	Errors

	Syntax and Semantic Errors
	Warnings

	Chapter 8. Library Reference
	Intrinsic Routines
	Library Files
	Standard Types
	jmp_buf
	va_list

	Absolute Memory Access Macros
	CBYTE
	CWORD
	DBYTE
	DWORD
	FARRAY, FCARRAY
	FVAR, FCVAR,
	PBYTE
	PWORD
	XBYTE
	XWORD

	Routines by Category
	Buffer Manipulation
	Character Conversion and Classification
	Data Conversion
	Math Routines
	Memory Allocation Routines
	Stream Input and Output Routines
	String Manipulation Routines
	Variable˚length Argument List Routines
	Miscellaneous Routines

	Include Files
	8051 Special Function Register Include Files
	80C517.H
	ABSACC.H
	ASSERT.H
	CTYPE.H
	INTRINS.H
	MATH.H
	SETJMP.H
	STDARG.H
	STDDEF.H
	STDIO.H
	STDLIB.H
	STRING.H

	Reference

	Appendix A. Differences from ANSI€C
	Compiler-related Differences
	Library-related Differences

	Appendix B. Version Differences
	Version 6.0 Differences
	Version 5 Differences
	Version 4 Differences
	Version 3.4 Differences
	Version 3.2 Differences
	Version 3.0 Differences
	Version 2 Differences

	Appendix C. Writing Optimum Code
	Memory Model
	Variable Location
	Variable Size
	Unsigned Types
	Local Variables
	Other Sources

	Appendix D. Compiler Limits
	Appendix E. Byte Ordering
	Appendix F. Hints, Tips, and Techniques
	Recursive Code Reference Error
	Problems Using the printf Routines
	Uncalled Functions
	Using Monitor-51
	Trouble with the bdata Memory Type
	Function Pointers

	Glossary
	Index

